
Getting Results
with the Add-on Developer’s Kit

Tecplot, Inc. Bellevue, WA 2006

COPYRIGHT NOTICE

Tecplot 360TM Add-on Developers Kit - Getting Results Manual is for use with Tecplot 360TM 2006.

Copyright © 1988-2006 Tecplot, Inc. All rights reserved worldwide. Except for personal use, this manual may not be reproduced, trans-
mitted, transcribed, stored in a retrieval system, or translated in any form, in whole or in part, without the express written permission of
Tecplot, Inc., 3535 Factoria Blvd., Ste 550, Bellevue, Washington, 98006, U.S.A.

The software discussed in this documentation and the documentation itself are furnished under license for utilization and duplication
only according to the license terms. The copyright for the software is held by Tecplot, Inc. Documentation is provided for information
only. It is subject to change without notice. It should not be interpreted as a commitment by Tecplot, Inc. Tecplot, Inc. assumes no liabil-
ity or responsibility for documentation errors or inaccuracies.

Tecplot, Inc.
PO Box 52708
Bellevue, WA 98015-2708 U.S.A.
Tel: 1.800.763.7005 (within the U.S. or Canada), 00 1 (425)653-1200 (internationally)
email: sales@tecplot.com, support@tecplot.com
Questions, comments or concerns regarding this documentation: documentation@tecplot.com
For more information, visit http://www.tecplot.com

THIRD PARTY SOFTWARE COPYRIGHT NOTICES

ENCSA Hierarchical Data Format (HDF) Software Library and Utilities © 1988-1998 The Board of Trustees of the University of Illi-
nois. All rights reserved. Contributors include National Center for Supercomputing Applications (NCSA) at the University of Illinois,
Fortner Software (Windows and Mac), Unidata Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and
Mark Adler (gzip). Bmptopnm, Netpbm © 1992 David W. Sanderson. Dlcompat © 2002 Jorge Acereda, additions and modifications by
Peter O’Gorman. Ppmtopict © 1990 Ken Yap.

TRADEMARKS

Tecplot®, Tecplot 360TM, PreplotTM, Enjoy the ViewTM, and FramerTM are registered trademarks or trademarks of Tecplot, Inc. in the
United States and other countries.

Encapsulated PostScript, PostScript, Premier are registered trademarks or trademarks of Adobe Systems, Incorporated in the U.S. and/
or other countries. Ghostscript is a registered trademark of Aladdin Enterprises in the U.S. and/or other countries. Linotronic, Helvetica,
Times are registered trademarks or trademarks of Allied Corporation in the U.S. and other countries. AutoCAD, DXF are registered
trademarks or trademarks of Autodesk, Incorporated in the U.S. and other countries. Élan License Manager is a trademark of Élan Com-
puter Group, Incorporated in the U.S. and/or other countries. DEC, Digital, LaserJet, HP-GL, HP-GL/2, PaintJet are registered trade-
marks or trademarks of Hewlett-Packard Company in the U.S. and other countries. X-Designer is a registered trademark or trademark
of Imperial Software Technology in the U.S. and/or other countries. Builder Xcessory is a registered trademark or trademark of Inte-
grated Computer Solutions, Incorporated in the U.S. and other countries. IBM, RS6000, PC/DOS are registered trademarks or trade-
marks of International Business Machines Corporation in the U.S. and/or other countries. Bookman is a registered trademark or
trademark of ITC Corporation in the U.S. and/or other countries. VIP is a registered trademark or trademark of Landmark Graphics
Corporation in the U.S. and/or other countries. X Windows is a registered trademark or trademark of Massachusetts Institute of Tech-
nology in the U.S. and/or other countries. ActiveX, Excel, MS-DOS, Microsoft, Visual Basic, Visual C++, Visual J++, Visual Studio,
Windows, Windows Metafile are registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries. HDF,
NCSA are registered trademarks or trademarks of National Center for Supercomputing Applications in the U.S. and/or other countries.
UNIX, Motif are registered trademarks or trademarks of Open Software Foundation, Incorporated in the U.S. and other countries. Grid-
gen is a registered trademark or trademark of Pointwise, Incorporated in the U.S. and/or other countries. Eclipse, FrontSim are regis-
tered trademarks or trademarks of Schlumberger, Limited in the U.S. and/or other countries. IRIS, IRIX, OpenGL are registered
trademarks or trademarks of Silicon Graphics, Incorporated in the U.S. and/or other countries. Solaris, Sun, Sun Raster are registered
trademarks or trademarks of Sun MicroSystems, Incorporated in the U.S. and/or other countries. All other product names mentioned
herein are trademarks or registered trademarks of their respective owners.

NOTICE TO U.S. GOVERNMENT END-USERS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the
Commercial Computer-Restricted Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rights in Tech-
nical Data and Computer Software clause at DFARS 252.227-7013, and/or in similar or successor clauses in the DOD or NASA FAR
Supplement. Contractor/manufacturer is Tecplot, Inc., Post Office Box 52708, Bellevue, WA 98015-2708.

06-360-05-1

Rev 03/2006

3

Table of Contents

Chapter 1 About Add-ons... 7
Introduction...7

Chapter 2 Creating Add-ons under Windows............... 9
Setting Up to Build Add-ons under Windows9
Creating an Add-on with Visual C++9
Dialog Creation with Tecplot GUI Builder.........................10

Chapter 3 Creating Add-ons under UNIX...................11
Setting Up to Build Add-ons .. 11
Creating a New Add-on ..12
Creating the Graphical User Interface for Your Add-on.....13
Compiling the Add-on ..13

Using Runmake...13
Editing the CustomMake File ...13

Chapter 4 Hello World! .. 15
Introduction to the Hello World Add-on.............................15
Modifying the MenuCallback() Function16

Chapter 5 The Equate Add-on.................................... 17
Introduction to the Equate Add-on17
Creating the Dialog ...18
GUI Source Code ..21
Setting up State Variables and Initializing the Dialog Fields22
Writing the Compute() Function...24
Exercises ...28

Table of Contents

4

Chapter 6 Extending the Equate Add-on.................... 29
Getting Started .. 29
Editing Equate .. 29

Chapter 7 Creating a Data Converter........................ 35
Converters Versus Loaders ... 35

How do Converters work in Tecplot?35
Introduction to the Converter Add-on 35
Modifying the ConverterCallback() Function 36
Writing the DoConversion() Function 39
Parsing the Code ... 46
The Get_Token() Function ... 46
 The GetVars() Function .. 50

Chapter 8 Adding Help... 55
Introduction .. 55
Creating Help.. 55

Chapter 9 Creating a Data Loader 57
Loaders Versus Converters ... 57
How a Data Loader Add-on Works 57
Creating the Data Loader.. 58
Creating the Dialog... 59
Implementing Dialog Callbacks ... 61

The FileName Text Field Callback ...61
The Browse Button Callback ..61
The OK Button Callback ..62

Registering Callbacks ... 63
Loading the Data .. 69

Using Auto Load on Demand ...69
Using Custom Load on Demand ..70

 Using Immediate Loading ... 75

5

Chapter 10 Extending Interactive User Interface Capabilities
79
Introduction to the SumProbe Add-on79
The MenuCallback() Function ..80
The MyProbeCallback() Function81
Exercises ...83

Chapter 11 Animating .. 85
Introduction to the AnimIPlanes Add-on............................85
Creating the Dialog ...86

Windows..86
UNIX...86

Setting up State Variables/Initializing Dialog Fields89
The Animate I Planes button ..92
Writing the AnimatePlanes() Function94
Monitoring State Changes...102
Exercises ...105

Chapter 12 The Polynomial Integer Add-on 107
Introduction to the PolyInt Extended Curve-Fit107
Getting Started ..107
Source Files...108

File main.c ..108
File ENGINE.h ...109
engine.c... 111

 The XYDataPointsCallback() Function 119
The PrepareWorkingArray() Function124
 The ExtractCurveValuesFromWorkingArray() Function 127
The ProbeValueCallback() Function.................................128
 The InsertProbeValueInWorkingArray() Function134
The CurveInfoStringCallback() Function135

Table of Contents

6

Chapter 13 The Simple Average Add-on 137
Introduction to the SimpAvg Extended Curve-Fit 137
Getting Started .. 137
Designing the Add-on... 138

What are the settings going to be? ...138
What are the default settings? ..138
What is the syntax for the CurveSettings string?139
How to maintain the values of the settings?...........................139

Handling the CurveSettings String 139
The InitializeCurveParams() Function 146
Registering the Add-on with Tecplot................................ 147
Creating the Dialog... 147
Launching and Initializing the Dialog 148

Initializing the Dialog ..150
Making the Dialog Operational .. 155

Updating the Sensitivities ...155
Updating the Mapping/Zone Style Dialog........................ 159
The Curve-Fit ... 160
The XYDataPointsCallback() ... 161

7

Introduction

Chapter 1 About Add-ons

1 - 1 Introduction
This manual describes strategies for creating Tecplot add-ons. Add-ons are executable modules that
extend Tecplot’s basic functionality. Add-ons are implemented as compiled function libraries,
called variously “shared objects,” “shared libraries,” or “dynamic-link libraries” (DLLs). Using the
Tecplot application programming interface you can create add-ons to generate plots, load data from
files, manipulate or analyze data, or perform a broad variety of specialized tasks. Because add-ons
are shared objects, you do not need to link them into Tecplot. You are not limited to using the com-
pilers Tecplot uses, nor do you have to compile, or recompile, large libraries of Tecplot function
calls.

Different operating systems have different ways of creating and using shared libraries. Add-on
Developer’s Kit (ADK) provides utilities that mask most of these differences for related programs.
All Windows or UNIX systems will behave in a similar fashion. ADK tools will resolve the differ-
ences for you. All of the examples of the source code shown in this manual are included in the Tec-
plot distribution and are found in the adk/samples sub-directory below the Tecplot Home
Directory. To read more about advanced topics, see the Add-on Developer’s Kit User’s Manual and
the Add-on Developer’s Kit On-line Reference. All are included as Adobe PDF files with your Tec-
plot distribution or are available at www.tecplot.com/support/tecplot_documentation.htm.

http://www.tecplot.com/support/tecplot_documentation.htm

8

9

Setting Up to Build Add-ons under Windows

Chapter 2 Creating Add-ons under
Windows

2 - 1 Setting Up to Build Add-ons under Windows
To set up to build add-ons, install Tecplot Version 360. Make sure the Tecplot Add-on Developers
Kit option was selected during installation. To verify that the Add-on Developer’s Kit was installed
on your computer, look in your Tecplot Home Directory for the ADK sub-directory. If the ADK sub-
directory is not present, you will need to re-install Tecplot Version 360.

If you plan on using Tecplot GUI Builder (TGB), make sure the following line is in the tec-
plot.add file in the Tecplot Home Directory:

$!LoadAddon “guibld”

Tecplot GUI Builder is discussed in detail in Section 2.3, as well as in the Tecplot Add-On Devel-
opers Kit Users Manual.

2 - 2 Creating an Add-on with Visual C++
Tecplot Add-on Wizard is included in the Tecplot installation and is fully integrated with Visual
C++ Version 5.0 or higher. To begin, select New from Visual C++’s File menu, then click on the
Projects tab. For the project type select “Tecplot 360 Add-on Wizard” and follow the prompts.
Since Tecplot add-ons are DLLs, Tecplot Add-on Wizard will automatically create a DLL work-
space, set the proper link libraries, include paths, and generate default source code files.

Note: FORTRAN under Windows is only supported if you are using Compaq Visual FORTRAN.

After running Tecplot Add-on Wizard, you must complete the following steps:

1. Select Settings from the Visual C++ Project menu.

2. Click on Debug.

3. Select General.

4. Set Executable for debug session to be tecplot.exe (including the full
path if necessary).

10

5. Set the working directory to Debug.

6. Set the program arguments to be projectname.dll. Projectname is the
base name of your DLL.

7. Click on the C/C++ tab, select Precompiled Headers and select Automatic
use of precompiled headers (Select this option because with C++ the settings
are set to use stdafx.h as the precompiled header (which causes an error upon
compilation).

Compiling and debugging your add-on is now a matter of using the Developer’s Studio environ-
ment as you would for any other DLL project.

NOTE: If you find that when you try and run your add-on, you instead run a pre-existing
add-on with the same name that exists in your path, try the following settings instead

1. Set the Working directory to empty;

2. Set the Program arguments to be Debug/projectname.dll

See Chapter 6, “Running Tecplot with Add-ons,” in the ADK User’s Manual for detailed instruc-
tions on loading add-ons.

2 - 3 Dialog Creation with Tecplot GUI Builder
Tecplot Add-on Developer’s Kit includes a graphical user interface (GUI) builder called Tecplot
GUI Builder (TGB). TGB is provided in the Tecplot distribution. The Tecplot ADK User’s Manual
outlines its use. When you run Tecplot Add-on Wizard from Developer Studio, a default set of TGB
files are created. This default code will display a blank dialog, which may be modal or modeless.
These project settings are made automatically by Tecplot Add-on Wizard. You will edit a TGB dia-
log layout in Tecplot using TGB add-on, since TGB dialog layouts are stored as Tecplot layout
files. Developer Studio is not involved in editing or maintaining TGB dialog layouts.

11

Setting Up to Build Add-ons

Chapter 3 Creating Add-ons under
UNIX

3 - 1 Setting Up to Build Add-ons
To create Tecplot add-ons under Unix, you must set up a working directory where source code can
be created and edited. This directory will hereafter be called the Add-on Development Root Direc-
tory. You may create any number of add-ons in the Add-on Development Root Directory.

To set up for building add-ons do the following:

1. Install Tecplot if you have not done so already. Make sure the Add-on Devel-
opment Tools option was selected during the installation process.

2. Create the Add-on Development Root Directory if you have not done so
already. This can be anywhere you choose.

3. Be sure that you have the TEC360HOME environment variable defined and
assigned to the directory where Tecplot was installed.

4. Be sure your PATH environment variable includes the following:
$TEC360HOME /bin:$TEC360HOME /adk/bin

5. Create a new file called tecdev.add in the directory created in step 2 (i.e.
your Add-on Development Root Directory). Edit the file and add the following
line:

#!MC 1100

6. (Optional) If you plan on using the Tecplot GUI builder, then add the follow-
ing line to the tecdev.add file in your Add-on Development Root Direc-
tory:

$!LoadAddon "|TECHOME|/lib/libguibld"

7. Set the environment variable TECADDONDEVDIR to the path of the directory
created in step 2.

8. Set the environment variable TECADDONDEVPLATFORM to one of the fol-
lowing:

12

hp7xx.11 linuxg23.24 linux.24 macx.101
hp7xx64.65 linuxi64.24 linux64.26ibmx.43 sgix.65
sgix64.65 sun464.57 sun4.57

From this point on, when you want to test the add-ons you are developing, use the -develop flag
when running Tecplot. Later when you want to make your add-on accessible to all who run Tecplot,
just copy the shared object library to the lib subdirectory below the Tecplot Home Directory and
include the command: $!LoadAddOn" |TECHOME|/lib/libMyAddOnName" in the tec-
plot.add file in the Tecplot Home Directory.

3 - 2 Creating a New Add-on
1. Go to the Add-on Development Root Directory (i.e., the directory created in

step 2 of Section 3 - 1, “Setting Up to Build Add-ons.”).

2. Type: CreateNewAddOn

This will ask you a few questions about the add-on to be built, including whether or not
you intend to use the Tecplot GUI Builder. When this is finished, you will have a new
sub-directory named MyAddOnName, where MyAddOnName is the name that you
supplied in step 2 while running CreateNewAddOn. This subdirectory contains a set of
file. These files can be compiled to create a minimal add-on.

3. Edit the tecdev.add file located in the Add-on Development Root direc-
tory and add the following line: $!LoadAddOn "|$TECADDONDEVDIR|/
libMyAddOnName" where MyAddOnName is the name you supplied in step 2 while
running CreateNewAddOn.

For your add-on to communicate with Tecplot it must do the following:

• Make public an “initialization” function named InitTecAddOn. When you
run CreateNewAddOn this function is created automatically for you and is
located in the file main.c (or main.cpp). When Tecplot starts up it scans
the tecdev.add file, loads named shared object libraries and makes a call to
the InitTecAddOn function. The initialization function typically includes a
call to add a converter, add a loader, register a curve-fit, or add an item to the
Tools menu, so the add-on can be accessed from the Tecplot interface.

• Make calls to the TecUtil functions available from the ADK via the libtec
shared object library. These functions allow you to do a wider range of tasks
than can be done through the Tecplot interface itself.

13

Creating the Graphical User Interface for Your Add-on

• If your add-on does not require a custom built GUI, you will, at this point, have
a source file named main.c, and perhaps a source file named engine.c.
The latter file contains callback functions for data loaders, data convertors, or
curve-fits.

3 - 3 Creating the Graphical User Interface for Your Add-on
The Tecplot Add-on Developers Kit includes a simple GUI builder called Tecplot GUI Builder
(TGB). You are not restricted to this GUI builder. You may use a commercial GUI builder like
Builder Xcessory or X-Designer. Chapter 8 of the ADK User’s manual outlines how to use the Tec-
plot GUI Builder. It is provided on the Tecplot CD. When you run CreateNewAddOn and choose
to use the TGB, a starter set of TGB files are created for you.

3 - 4 Compiling the Add-on

3- 4.1 Using Runmake
If you used CreateNewAddOn, compiling the add-on is straightforward. Go to the subdirectory
where your add-on source code is located and type Runmake.You will be prompted for the plat-
form type and the type of executable to create.

If you know the platform name and the build option ahead of time then you can run Runmake
without the questions. For example:

• To compile on an SGI machine under IRIX 6.5 and create a debug version use:
Runmake sgix.65 -debug

• To make a release version use: Runmake sgix.65 -release

If all goes well with the compile, you will end up with a shared object library located in
../lib/platform/buildtype. Running Tecplot with the -develop flag automatically directs it to
look for your library in this directory.

Note: If the Tecplot Home Directory and your Add-on Development Directory are located in direc-
tories that can be remotely mounted by other UNIX computers, then you can log on to those com-
puters and use Runmake as described earlier. The resulting shared library will be stored in the
appropriate subdirectory for the computer platform.

3- 4.2 Editing the CustomMake File
The Runmake command used to build your add-on actually invokes the UNIX make program
with a large list of flags that customize the make process for your platform. Just prior to calling

14

make, the Runmake shell script checks to see if a local file called CustomMake exists and is exe-
cutable. If so, it runs the CustomMake shell script in place and then runs make. This process
allows you to add to or completely replace any assignments made by Runmake.

For example, suppose you want to add an additional flag called -xg to the cc compile command.
You could do so by editing the local CustomMake shell script in the sub-directory of your add-on
and adding:

 CFLAGS="$CFLAGS -xg"

This replaces CFLAGS (i.e. the flags used with the cc command) with its old contents plus the -xg
flag.

The default CustomMake file created in your add-on directory when you run CreateNewAd-
dOn contains edit instructions including an explanation of the flags available for you to change.

15

Introduction to the Hello World Add-on

Chapter 4 Hello World!

4 - 1 Introduction to the Hello World Add-on
Hello World, the Tecplot add-on you will create in this chapter, is an example of how an add-on per-
forms tasks or functions for you. Hello World will appear under Tecplot’s Tools menu as “Hello
World!”. When selected, a dialog displaying the text “Hello World!” will appear. To create this add-
on you should have first read Chapter 2 “Creating Add-ons under Windows” on page 9 or Chapter
3 “Creating Add-ons under UNIX” on page 11. All of the code presented in this chapter is platform
independent, allowing you to work in either a UNIX or Windows environment. All of the example
source code shown in this manual is included in the Tecplot distribution and is found in the adk/
samples sub-directory below the Tecplot Home Directory. Hello World uses source code files
created by the CreateNewAddOn script (UNIX), or Tecplot Add-on Wizard (Windows). Our
project name will be “hiwrld”, and the add-on name will be “Hello World.”

When running CreateNewAddOn or Tecplot Add-on Wizard, answer the questions as follows:

• Project name (base name): hiwrld

• Add-on name: Hello World

• Company name: [Your Company Name]

• Type of Add-on General Purpose

• Language: C

• Use TGB to create a platform-independent GUI?: No

• Add a menu callback to the Tecplot "Tools" menu?: Yes

• Menu Text: Hello World!

The question “Use TGB to create a platform-independent GUI” option specifies that you will use
Tecplot GUI Builder in your add-on. After running the CreateNewAddOn script or Tecplot Add-
on Wizard you should have the following files: ADDGLBL.h and main.c.You will have other
files specific to your platform, but only those above will be modified. Verify that you can compile
your add-on project and load it into Tecplot. For UNIX this is done by running the Runmake
script. In Windows, click Build/Build hiworld.dll. For detailed information on compiling refer to

16

Chapter 2 “Creating Add-ons under Windows” on page 9 or Chapter 3 “Creating Add-ons under
UNIX” on page 11. Once you have compiled Hello World you can run Tecplot and select “Hello
World!” from Tecplot’s Tools menu. Text is written to standard out (or the debug window in Devel-
oper Studio) reading Menu function called. When finished, this will read “Hello World!” in a dia-
log.

4 - 2 Modifying the MenuCallback() Function
Most add-ons contain a callback function named MenuCallback(). This is called by Tecplot
when the user selects the add-ons registered menu option from the Tools menu. This callback func-
tion is registered by the TecUtilMenuAddOption() function, which is in InitTecAd-
dOn(). These will be discussed in detail later. Because the add-on dialog displays a different
message than “Hello World!” it must be edited. New or modified source code is displayed in the
bulleted lines. If you are working along with this tutorial, add the bulleted lines only. All TecUtil
functions are explained in the ADK Reference Manual.

In main.c, edit the MenuCallBack() function as follows:

static void STDCALL MenuCallback(void)
{
 TecUtilLockStart(AddOnID):
• TecUtilDialogMessageBox(“Hello World!”,MessageBox_Information);
 TecUtilLockFinish(AddOnID);
}

Hello World is now complete. Recompile and run Tecplot.

17

Introduction to the Equate Add-on

Chapter 5 The Equate Add-on

5 - 1 Introduction to the Equate Add-on
Equate, the Tecplot add-on you will create in this chapter, is an example of how to query and set
field data in an add-on. It will appear on the Tools menu as Equate. This add-on multiplies each
data point of the first variable in the first zone by a value entered in a dialog text field.

All of the examples of the source code shown in this manual are included in the Tecplot distribution
and are found in the adk/samples sub-directory below the Tecplot home directory.

Equate uses source code files created by the CreateNewAddOn script (UNIX), or Tecplot Add-
on Wizard (Windows). Our project and add-on names will be Equate.

When running CreateNewAddOn or Tecplot Add-on Wizard answer the questions as follows:

• Project name (base name): Equate

• Add-on name: Equate

• Company name: [Your Company Name]

• Type of Add-on General Purpose

• Language: C

• Use TGB to create a platform-independent GUI?: Yes

• Add a menu callback to the Tecplot "Tools" menu?: Yes

Note: For the purposes of this tutorial, it is assumed that you
have already read the chapters “Creating Add-ons Under
Windows” and/or “Creating Add-ons Under UNIX” in the
ADK User’s Manual, and that you have successfully created

and compiled a set of starter files. All of the code from this point on is plat-
form-independent, and you can work through the tutorial using either a Win-
dows or UNIX environment.

18

• Menu Text: Equate

• Menu Callback Option: Launch a modeless dialog

• Dialog title: Equate

After running the CreateNewAddOn script, or Tecplot Add-on Wizard you should have the fol-
lowing files:

ADDGLBL.h guicb.c guibld.c guidefs.c
GUIDEFS.h main.c gui.lay

You will have other files specific to your platform, but only those above will be modified. Verify
that you can compile your add-on project and load it into Tecplot. For UNIX this is done by running
the Runmake script. In Windows, you add-on will appear in the Tools menu in Tecplot. For
detailed information on compiling refer to Chapter 2 “Creating Add-ons under Windows” on
page 9 or Chapter 3 “Creating Add-ons under UNIX” on page 11.

5 - 2 Creating the Dialog
Now create your main dialog. This will be displayed when Equate is selected from Tecplot’s Tools
menu. The dialog will be modeless with a text field, label, and button. When a user enters a
numeric value in the text field and clicks the button, Equate will multiply each data point of the
first variable in the first zone by that value. Before beginning, be sure that Tecplot GUI Builder
(TGB) is available from Tecplot’s Tools menu. If TGB is not available, do the following

For Windows:

In the Tecplot Home Directory edit the file tecplot.add and add the line:

$!LoadAddOn “guibld”

For UNIX:

Edit the file tecdev.add in your Add-on Development Root Directory and add the line:

$!LoadAddOn “guibld”

To create the main dialog, perform the following steps:

1. Run Tecplot and load the gui.lay file for your project. Select Tecplot GUI
Builder (TGB) from the Tecplot Tools menu.

19

Creating the Dialog

2. Resize the frame and edit the layout as follows:

You can edit a control by double-clicking on it and editing as you would text.

NOTE: Although the text fields and buttons are referred to as
controls (since they exist in a Tecplot layout file), they are repre-
sented by Tecplot text field objects.

3. So that TGB will create meaningful variable names for the text field controls,
change their properties in Tecplot. Double-click on the text field “TF:,” then
select Options.

Note: Do not alter the text string “TF” Tecplot uses this string to
identify this control as a Text Field.

In the Macro Function text field, set VarName=MulNum. This will be the base name of the “Multi-
ply By” callback function, which will be named MulNum_TF_D1_CB.TGB takes the base name
and decorates it with the dialog number, control type and CB (for callback).

4. Double-click on the Compute button, then select Options. Set Var-
Name=Compute in the “Macro Function” field. The Compute buttoncallback
function will be named Compute_BTN_D1_CB. Double-click on the “Multi-
ply By” label, then select Options. Set VarName=MultiplyBy in the
“Macro Function” field. Callback functions are not generated for labels, but a
variable name will be generated and will be named MultiplyBy_LBL_D1.

5. In TGB, the title of the dialog is specified in the Edit Current Frame dialog.
Double-click on the dialog frame and verify that the Frame Name has been set
to “Equate”:

20

ID=1 MODE=MODELESS TITLE=”Equate” OKCLOSEBUTTON=T HELPBUTTON=T

6. You can now build the source for this layout. From the TGB dialog click Go
Build. If you wish to preview what your dialog will look like when run, click
Preview Layout from TGB.

7. Rename the file guicb.tmp to be guicb.c, replacing the original
guicb.c then compile the source code.

21

GUI Source Code

5 - 3 GUI Source Code
Now we will examine the source code files generated by TGB.

• Files guidefs.c, GUIDEFS.h: If you are using C++, be sure that
GUIDEFS.h is included at the top of the main.cpp, and add this code in the
MenuCallback function:

BuildDialog1 (MAINDIALOGID);
TecGUIDialogLaunch (Dialog1Manager);

GUIDEFS.h contains the variable names of all of the controls added to the dia-
log. TGB has taken the variable names specified in the Macro Function Com-
mand field and decorated them as follows:

int Dialog1Manager = BADDIALOGID;
int MulNum_TF_D1 = BADDIALOGID;
int Compute_BTN_D1 = BADDIALOGID;
int MultiplyBy_LBL_D1 = BADDIALOGID;

TF is text field and Dn is the dialog number. Since there is only one dialog box,
n is 1. For example, the name MulNum_TF_D1 can be decoded as “This vari-
able represents the MulNum Text Field in Dialog 1.” The variables are ini-

22

tialized to BADDIALOGID to ensure that they cannot be passed as parameters to
any TecGUI library function until the dialog has actually been created. At that
time they will be assigned a valid identification.

Note: Never edit these files directly. TGB will generate them every time you
click Go Build.

• File guibld.c: Contains the code used to build the dialogs.

Note: Never edit this file directly. TGB will generate this file every time you
click Go Build, so any changes you make will be overwritten. Also, this file is
never included directly in the project. Instead, the text of this source code file is
included directly in guicb.c with a #include 'guibld.c' preprocessor
statement at the end of guicb.c.

• File guicb.tmp: Contains all of the callbacks for the dialog controls. A
callback function is a function you define which is called by Tecplot when an
event occurs for a control. For example, a button control will have a callback
function for the button pressed event.

Initially, TGB will generate empty callbacks, but instead of writing them to
guicb.c, it will write them to a file named guicb.tmp. The reason for this
is that TGB does not want to overwrite any code that you may have added to
guicb.c. Thus, whenever you add new controls, you must cut-and-paste the
new callback functions in guicb.tmp into guicb.c. Note that in Step 7 we
copied guicb.tmp to guicb.c. This is what you want to do when you first
start the project since at that time there is no custom code in guicb.c.

To see the new dialog:

1. Compile the add-on and run Tecplot.

2. Select Equate from the Tools menu.

5 - 4 Setting up State Variables and Initializing the Dialog Fields
When the dialog is first displayed, we need to be sure that the MulNum text field has a reasonable
default value. To avoid using a global variable for MulNum, the value will be read from the text
field and passed to a function called Compute(). The text field will then be initialized in the
Dialog1Init_CB() function.

Note the following line in guicb.c:

23

Setting up State Variables and Initializing the Dialog Fields

/* This is a string because it is put in a dialog text field */

#define DEFAULT_MULNUM “2”

Find the following segment of code in guicb.c and note the line beginning with TecGUIText-
Field...

static void Dialog1Init_CB(void)

{

 TecUtilLockStart(AddOnID);

 /*<<< Add init code (if necessary) here>>>*/

 TecGUITextFieldSetString(MulNum_TF_D1,DEFAULT_MULNUM);

 TecUtilLockFinish(AddOnID);

}

We have defined the default value to be a string, since that is what TecGUITextFieldSet-
String() expects. The Compute() function will be called when you click Compute. The func-
tion will be prototyped as follows: extern void Compute (double MulNum); Note the function
call to Compute() in guicb.c. This function will be written below. Before calling this function,
check that a data set is available. If there is, then it is implied that at least one zone and one variable
exist.

Edit guicb.c as follows:

static void Compute_BTN_D1_CB(void)

{

 char *strMulNum = NULL;

24

 TecUtilLockStart(AddOnID);

 strMulNum = TecGUITextFieldGetString(MulNum_TF_D1);

 if (TecUtilDataSetIsAvailable())

 {

 Compute(atof(strMulNum));

 }

 else

 TecUtilDialogErrMsg(“No data set available.”);

 TecUtilStringDealloc(&strMulNum);

 TecUtilLockFinish(AddOnID);

}

No error checking is done on the input string. As an exercise, use TecGUITextFieldGetDou-
ble, TecGUITextFieldSetDouble, and TecGUITextFieldValidateDouble to do
error checking for you.

5 - 5 Writing the Compute() Function
The final task is to write the Compute() function. This will multiply each data point of the first
variable in the first zone by the input parameter, then send a message to Tecplot that the data set has
changed. The recommended way for an add-on to get and set field data is with FieldData_pa

25

Writing the Compute() Function

handles. See the ADK User’s Manual for a complete discussion of getting and setting data values
within Tecplot. Examine main.c and note the following function:

void Compute(double MulNum)

{

 LgIndex_t IMax;

 LgIndex_t JMax;

 LgIndex_t KMax;

 LgIndex_t i;

 LgIndex_t MaxIndex;

 FieldData_pa FD;

 double Value;

 Set_pa set;

 TecUtilLockStart(AddOnID);

 if (TecUtilZoneIsEnabled(1) &&

 TecUtilVarIsEnabled(1) &&

 TecUtilZoneGetType(1) == ZoneType_Ordered &&

 TecUtilDataValueGetLocation(1,1) == ValueLocation_Nodal)

 {

 /* Get the number of data points */

 TecUtilZoneGetInfo(1, /* Zone */

26

 &IMax,

 &JMax,

 &KMax,

 NULL, /* XVar */

 NULL, /* YVar */

 NULL, /* ZVar */

 NULL, /* NMap */

 NULL, /* UVar */

 NULL, /* VVar */

 NULL, /* WVar */

 NULL, /* BVar */

 NULL, /* CVar */

 NULL); /* SVar */

 MaxIndex = IMax * JMax * KMax;

 FD = TecUtilDataValueGetRef(1,1);

 for (i = 1; i <= MaxIndex; i++)

 {

 /* Get the value */

27

Writing the Compute() Function

 Value = TecUtilDataValueGetByRef(FD,i);

 /* Change it */

 Value *= MulNum;

 /* And set it back */

 TecUtilDataValueSetByRef(FD,i,Value);

 }

 /* Inform Tecplot that we’ve changed the data */

 set = TecUtilSetAlloc(FALSE);

 TecUtilSetAddMember(set,1,FALSE); /* Zone 1 */

 TecUtilStateChanged(StateChange_VarsAltered,

 (ArbParam_t)set);

 TecUtilSetDealloc(&set);

 }

 else

 TecUtilDialogErrMsg(“This sample add-on only performs an equation on “

 “variable 1 of zone 1 and only if the zone is “

 “ordered and the variable is node located.”);

28

 TecUtilLockFinish(AddOnID);

}

Equate is now complete. Recompile and load it into Tecplot. Note that this example add-on is only
valid for ordered data as we computed MaxIndex by simply multiplying the dimensions together.

5 - 6 Exercises
1. Currently, there is no error checking done on the value entered in the text field.

You could enter “ABCDEFG” and atof() would convert it into 0.0. This
could be fixed by adding error checking to the button callback. Use TecGUI-
TextFieldValidateDouble and TecGUITextFieldGetDouble
for better error checking.

2. Add a multi-selection list box which allows you to select one or more zones
from a set.

3. Add a multi-selection list box to select one or more variables from a set.

4. This add-on assumes variable 1 and Zone 1 are “Enabled,” which may not be
the case. Add error checking to make sure Zone 1 is enabled (TecUtil-
ZoneIsEnabled) and variable 1 is enabled (TecUtilVarIsEnabled).

29

Getting Started

Chapter 6 Extending the Equate Add-
on

6 - 1 Getting Started
Now we will examine code that allows Equate’s compute function to be run from a macro com-
mand. All of the examples of the source code shown in this manual are included in the Tecplot dis-
tribution. They may be found in: TEC360HOME /ADK/Samples

6 - 2 Editing Equate
The first step will be to decide what information is required by the add-on. Equate only requires
that the value is sent to the Compute() function. To write out the macro command, we will use
the TecUtilMacroRecordAddOnCommand() function. All TecUtil functions are defined
in the ADK Reference Manual.

Note the Compute_BTN_D1_CB() function in guicb.c:

static void Compute_BTN_D1_CB(void)

{

 char *strMulNum = NULL;

 TecUtilLockStart(AddOnID);

 strMulNum = TecGUITextFieldGetString(MulNum_TF_D1);

 if (TecUtilDataSetIsAvailable())

 {

 Compute(atof(strMulNum));

30

 if (TecUtilMacroIsRecordingActive())

 TecUtilMacroRecordAddOnCommand(“equate”, strMulNum);

 }

 else

 TecUtilDialogErrMsg(“No data set available.”);

 TecUtilStringDealloc(&strMulNum);

 TecUtilLockFinish(AddOnID);

}

We check to see if a macro is being recorded before we write out the macro command. When
TecUtilMacroRecordAddOnCommand() is called, it will add a line to the macro file that
will appear as follows:

$!ADDONCOMMAND
ADDONID=’equate’
COMMAND=’2’

ADDONID tells Tecplot which add-on to send the command to, and COMMAND is the value in the
text field of Equate’s dialog. Now that a macro command is being written out, write a function to
decode it. When a macro is running, Tecplot will send the information following COMMAND to the
add-on. In this case, the only item that COMMAND contains is a number. Tecplot sends all the infor-
mation following COMMAND as a string.

Examine the following function in main.c:

Boolean_t STDCALL ProcessEquateCommand(char *CommandString,

 char **ErrMsg)

31

Editing Equate

{

 Boolean_t IsOk;

 TecUtilLockStart(AddOnID);

 IsOk = TecUtilDataSetIsAvailable();

 if (IsOk)

 {

 Compute(atof(CommandString));

 }

 else

 {

 *ErrMsg = TecUtilStringAlloc(2000, “Error message”);

 strcpy(*ErrMsg, “No data set available.”);

 }

 TecUtilLockFinish(AddOnID);

 return IsOk;

}

32

Functions that process macro commands may have any name you choose, however, they must have
the parameters shown above. This function mirrors, to a certain extent, the
Compute_BTN_D1_CB() function in guicb.c. There is no error checking of the value of
CommandString. This is left as an exercise. In order to process macros, you must register a call-
back function. Note that the second parameter of TecUtilMacroAddCommandCallback()
is the same as the name of our macro processing function.

In main.c note the registration of the ProcessEquateCommand() macro command callback
from within the add-on initialization code:

EXPORTFROMADDON void STDCALL InitTecAddOn(void)

{

 TecUtilLockOn();

 AddOnID = TecUtilAddOnRegister(

 100,

 ADDON_NAME,

 “V”ADDON_VERSION”(“TecVersionId”) “ADDON_DATE,

 “Joe Coder”);

 if (TecUtilGetTecplotVersion() < MinTecplotVersionAllowed)

 {

 char buffer[256];

 sprintf(buffer, “Add-on \”%s\” requires Tecplot “

 “version %s or greater.”,

 ADDON_NAME, TecVersionId);

33

Editing Equate

 TecUtilDialogErrMsg(buffer);

 }

 else

 {

 InitTGB();

 TecUtilMenuAddOption(“Tools”,

 “Equate”,

 ‘E’,

 MenuCB);

 TecUtilMacroAddCommandCallback(“equate”, ProcessEquateCommand);

 }

 TecUtilLockOff();

}

Equate is now complete. Compile and run your add-on. Try recording and playing back various
macros to verify that the new functions you have added work properly.

34

35

Converters Versus Loaders

Chapter 7 Creating a Data Converter

7 - 1 Converters Versus Loaders
Data can be imported into Tecplot using converter or loader add-ons. A converter is used when
simple proprietary data files need to be read into Tecplot and it is not necessary to use complex
options to decide which portions of the data should be loaded. Converters are simple to create but
not as versatile as loaders. A loader displays its own custom dialog for the user to enter the param-
eters needed to load the data: file name, skip values, and so forth. With converters, Tecplot controls
the user interface used to prompt the user for the names of the files to load.

7- 1.1 How do Converters work in Tecplot?
A data converter is a special type of add-on which can read data in a custom file format and import
it into Tecplot. It does this by reading the data and writing out a temporary binary data file. Tecplot
loads this temporary file and then discards it. Tecplot queries the user for a file name, then passes it
to the converter. If you need to query users for information other than file names, you must use a
data loader. (Data loaders are discussed in the following chapter.) Given the file name, the proce-
dure used by a converter to import that data is similar to creating a Tecplot binary file using the
TecIO functions. (See the Tecplot User’s Manual for more information on using the TecIO
library.)

7 - 2 Introduction to the Converter Add-on
Converter, the add-on created in this tutorial, is an example of how to load a comma- or space-
delimited list of values into Tecplot. Converter will appear under the Import option of Tecplot’s
File menu.

All of the examples of the source code shown in this manual are included in the Tecplot distribution
and are found in the adk/samples sub-directory below the Tecplot home directory.

Converter uses source code files created by the CreateNewAddOn script (UNIX), or Tecplot
Add-on Wizard (Windows). Our project name will be “Converter” and the add-on name will be
“Simple Spreadsheet Converter.”

When running CreateNewAddOn or the Tecplot Add-on Wizard answer the questions as follows:

• Project name (base name) Con-
verter

36

• Add-on name: Simple Spreadsheet Con-
verter

• Company Name: [Your company name]

• Type of add-on: Data Converter

• Language: C

• Use TGB to create a platform-independent GUI?: No

• Add a menu callback to the Tecplot?: No

After running CreateNewAddOn or Tecplot Add-on Wizard you should have the following files:

engine.c
ENGINE.h
main.c
ADDGLBL.h

There will be other files specific to your platform, however, we will only be dealing with those
above. Verify that the add-on will compile and that it can be loaded into Tecplot. If any problems
are encountered, refer to Chapter 2 “Creating Add-ons under Windows” on page 9 or Chapter 3
“Creating Add-ons under UNIX” on page 11.

The file ADDGLBL.h contains information specific to the add-on, such as its name, version num-
ber, and date. The files ENGINE.h and engine.c contain the main converter function.
engine.c currently has a short message saying that the converter is under construction. Through-
out this tutorial, code will be added to engine.c so when Tecplot calls the ConverterCall-
back() function it will perform of loading the file. The file main.c contains a function called
InitTecAddOn(). This registers the add-on with Tecplot. Note that within this function there
are other function calls which tell Tecplot the name of the add-on and state that it is a converter. The
InitTecAddOn() function is called by Tecplot exactly when the add-on is first loaded, and is
not called again.

7 - 3 Modifying the ConverterCallback() Function
When Converter is loaded by Tecplot, an option called Simple Spreadsheet Converter will appear
in the Import menu of Tecplot’s File menu. When Converter is launched, Tecplot will ask for a file
to convert. This is the file name that is passed to the ConverterCallback() function. Tecplot
will also create a unique temporary file name and pass that to ConverterCallback() as well.

37

Modifying the ConverterCallback() Function

In ConverterCallback() we are required to:

• Open the file DataFName.

• Convert the data and create a Tecplot binary data file.

• Close the file DataFName.

• Inform Tecplot if there were any errors.

Note how the ConverterCallback() function satisfies these requirements:

Boolean_t STDCALL ConverterCallback(char *DataFName,

 char *TempBinFName,

 char **MessageString)

{

 Boolean_t IsOk = TRUE;

 FILE *f;

 TecUtilLockStart(AddOnID);

 /* If there is no error, remember to free MessageString. */

 *MessageString = TecUtilStringAlloc(1000,”MessageString for CNVSS”);

 /* Try to open the file. */

 f = fopen(DataFName,”rb”);

38

 /* Make sure the file was opened. */

 if (!f)

 {

 strcpy(*MessageString,”Cannot open input file.”);

 IsOk = FALSE;

 }

 /* Do the conversion. */

 if (IsOk)

 IsOk = DoConversion(f,TempBinFName,MessageString);

 /* Close the file. */

 fclose(f);

 /* If there was no errors, deallocate MessageString. */

 if (IsOk)

 TecUtilStringDealloc(MessageString);

 TecUtilLockFinish(AddOnID);

 return IsOk;

39

Writing the DoConversion() Function

}

This function does the following:

• Creates an error message.* MessageString is allocated here because the
DoConversion() function (which will be explained later) may alter the
error message that is reported.

• Attempts to open the file. If the file cannot be opened, it sets IsOk to FALSE,
and resets the *MessageString to reflect the fact that the file could not be
opened.

• If the file was opened, it converts it. The task of conversion is handed off to
the DoConversion() function.

• Some clean up is performed, such as closing the file, de-allocating *Messag-
eString if there were no errors, and returning IsOk. If IsOk is FALSE at
the end of the function, there was an error. Tecplot will use the string in *Mes-
sageString to display an error message.

7 - 4 Writing the DoConversion() Function
Now that the file is open, we want to perform the conversion. In ConverterCallback() the
job of performing the conversion is passed to the DoConversion() function. DoConver-
sion() is responsible for parsing the file to be converted and sending specific information to the
TecUtil functions which take care of the conversion. A discussion of the TecUtil functions is
available in the ADK Reference Manual. In writing the DoConversion() function we are going
to make some assumptions about the format of the incoming file: that the variables are at the top of
the file, contained in quotes, and separated by commas or spaces; that the data follows the variables
and is separated by commas or spaces.

An example of such a file would be:

“Var 1” “Var 2” “Var 3”
1.23, 4.4, 3.24
2.45, 3.56, 5.2
3.2, 2.15, 7.56

The basic form of a conversion function is:

40

• Get variable names from the file into a comma-separated string.

• Call TecUtilTecIni() to initialize the temporary file.

• Call TecUtilTecZne() to add a zone.

• Get data points into an array.

• Call TecUtilTecDat() to add the data points to the temporary file.

• Call TecUtilTecEnd() to close the temporary file.

There are other things that our conversion function will do, however, the steps listed above are the
minimum required. There are two functions used for parsing the income file. These are Get-
Vars() and get_token(). GetVars() takes two parameters: a FILE* and a
StringList_pa. Be sure that you understand the StringList_pa data type before continu-
ing. For a discussion of StringList_pa see the ADK User’s Manual. GetVars() will parse
the text file for the variable names and place them in the string list. get_token() takes a FILE*
and will parse a text file for items which are separated by commas or spaces. There is no checking
to make sure that the item is a valid number. get_token() will update a global variable called
_token, which is used in DoConversion():

static Boolean_t DoConversion(FILE *f,

 char *TempFName,

 char **MessageString)

{

 Boolean_t IsOk = TRUE;

 StringList_pa VarList = TecUtilStringListAlloc(); /* Variable list. */

 int i;

 int NumValues;

 int NumVars;

 int IMax;

41

Writing the DoConversion() Function

 /* First, we need to read all of the variables. */

 GetVars(f,VarList);

 /* Make sure there is at least one variable. */

 if (IsOk && TecUtilStringListGetCount(VarList) < 1)

 {

 strcpy(*MessageString,”No variables defined.”);

 IsOk = FALSE;

 }

 if (IsOk)

 {

 /* Debug and VIsDouble are flags used by TecUtilTecIni(). */

 int Debug = 0;

 int VIsDouble = 1;

 /* Set JMax and KMax to 1 because we are creating an. */

 /* I-ordered data set. */

 int JMax=1,KMax=1;

42

 char VarNames[5000];

 char *s;

 NumValues = 0;

 /* VarList was filled by the function GetVars. */

 NumVars = TecUtilStringListGetCount(VarList);

 /* Count the number of data points. */

 while (get_token(f))

 {

 NumValues++;

 }

 /*

 * Get_token() changed where the file pointer is pointing, so

 * we must rewind to the start of the data.

 */

 fsetpos(f,&_DataStartPos);

 /* Compute the number of data points. */

43

Writing the DoConversion() Function

 IMax = NumValues/NumVars;

 /* FillVarNames with the variable names in VarList. */

 strcpy(VarNames,””);

 for (i=1; i<=NumVars && IsOk; i++)

 {

 s = TecUtilStringListGetString(VarList,i);

 strcat(VarNames,s);

 if (i<NumVars)

 strcat(VarNames,”,”);

 TecUtilStringDealloc(&s);

 }

 /*

 * Use the TecUtilTecIni() function to initialize the TempFName

 * file and fill it with the data set title and the variable name.

 */

 if (TecUtilTecIni(“ConvertedDataset”, VarNames,

 TempFName,”.”,&Debug,&VIsDouble) != 0)

 {

 strcpy(*MessageString,”Could not create data set.”);

44

 IsOk = FALSE;

 }

 /*

 * Use TecUtilTecZne to add the first zone.

 * In this case, it is the only zone.

 */

 if (IsOk && TecUtilTecZne(“Zone 1”,

 &IMax,&JMax,&KMax,

 “POINT”,NULL) != 0)

 {

 strcpy(*MessageString,”Could not add zone.”);

 IsOk = FALSE;

 }

 /* Now add the data. */

 if (IsOk)

 {

 LgIndex_t PointIndex = 1;

 int Skip = 0;

45

Writing the DoConversion() Function

 /* Allocate space to temporarily store the values. */

 double *LineValues = (double*) calloc(NumValues,sizeof(double));

 /* Get the values into the array LineValues. */

 for (i=0; i<NumValues; i++)

 {

 get_token(f);

 LineValues[i] = atof(_token);

 }

 /*

 * Use the function TecUtilTecDat() to fill the

 * temporary file with the values stored in the LineValues.

 */

 if (TecUtilTecDat(&NumValues,(void*)LineValues,&VIsDouble) != 0)

 {

 strcpy(*MessageString,”Error loading data.”);

 IsOk = FALSE;

 }

 /* Free LineValues now that we are done using it. */

46

 free(LineValues);

 }

 }

 /* Calling TecUtilTecEnd() closes the temporary file. */

 if (TecUtilTecEnd() != 0)

 {

 IsOk = FALSE;

 strcpy(*MessageString,”Error closing temporary file, “

 “could not create data set.”);

 }

 TecUtilStringListDealloc(&VarList);

 return IsOk;

}

7 - 5 Parsing the Code
A discussion of the parsing of the incoming file is not in the scope of this tutorial. However, the
parsing code has been included for completeness in the sections below.

7 - 6 The Get_Token() Function
The get_token() parses the file fetching basic tokens. Here is the function from engine.c:

47

The Get_Token() Function

/**

 */

#define MAX_TOKEN_LEN 5000

static char _token[MAX_TOKEN_LEN]; /* Global buffer for tokens. */

/**

 * Get the next token.

 *

 * @param f

 * Open file handle. The file must be open for binary reading.

 * @return

 * TRUE if more a token was fetched, FALSE otherwise.

 */

static Boolean_t get_token(FILE *f)

{

 int index = 0;

 char c;

 Boolean_t StopRightQuote;

 /* Skip white space. */

 while (fread(&c,sizeof(char),1,f) == 1 &&

48

 (c == ‘ ‘ || c == ‘,’ || c == ‘\t’ || c == ‘\n’ || c == ‘\r’))

 {

 /* Keep going. */

 }

 if (!feof(f))

 {

 /* Now we’re sitting on a non-white space character. */

 StopRightQuote = (c == ‘”’);

 if (StopRightQuote)

 {

 _token[index++] = c;

 fread(&c,sizeof(char),1,f);

 }

 do

 {

 if (index == MAX_TOKEN_LEN-1)

 break; /* Lines shouldn’t be longer than 5,000 characters. */

 if (feof(f))

49

The Get_Token() Function

 break;

 if (StopRightQuote)

 {

 if (c == ‘”’)

 {

 _token[index++] = c;

 break;

 }

 }

 else

 {

 /* Note that a space or comma may terminate the token. */

 if (c == ‘ ‘ || c == ‘,’ || c == ‘\t’ || c == ‘\n’ || c == ‘\r’)

 break;

 }

 _token[index++] = c;

 fread(&c,sizeof(char),1,f);

 } while(1);

 }

50

 _token[index] = ‘\0’;

 return (strlen(_token)) > 0;

}

7 - 7 The GetVars() Function
This function reads a line of comma- or space-separated variables from the top of the file to be
imported. The variables may optionally be enclosed in double quotes.

/**

 */

static fpos_t _DataStartPos;

/**

 * Reads a line of comman or space separated variables from the

 * top of the file to be imported. The variables may optionally

 * be enclosed in double quotes.

 *

 * @param f

 * Open file handle. The file must be open for binary reading.

 * @return

51

The GetVars() Function

 * TRUE if more a token was fetched, FALSE otherwise.

 */

static void GetVars(FILE *f,

 StringList_pa sl)

{

 char c;

 char buffer[5000];

 char *Line = buffer;

 char Var[100];

 int Index = 0;

 char Delimiter = ‘ ‘;

 /* Read up to the first new line. */

 do

 {

 if (fread(&c,sizeof(char),1,f) < 1)

 break;

 if (c != ‘\r’ && c != ‘\n’ && c != ‘\0’)

 buffer[Index++] = c;

 else

52

 break;

 } while (1);

 buffer[Index] = ‘\0’;

 /* Now get the variable names. */

 while (*Line)

 {

 Index = 0;

 if (*Line == ‘”’)

 {

 /* Skip to next double quote. */

 Line++;

 while (*Line && *Line != ‘”’)

 Var[Index++] = *Line++;

 }

 else

 {

 /* Read to the next delimiter. */

 while (*Line && *Line != Delimiter)

 Var[Index++] = *Line++;

53

The GetVars() Function

 }

 Var[Index] = ‘\0’;

 TecUtilStringListAppendString(sl,Var);

 /* Skip to the next non-delimiter char. */

 while (*Line && *Line != Delimiter)

 Line++;

 fgetpos(f,&_DataStartPos);

 /* Skip to next non-delimiter char. */

 while (*Line && (*Line == Delimiter || *Line == ‘ ‘))

 Line++;

 }

}

Converter is now complete. Recompile and load it into Tecplot.

54

55

Introduction

Chapter 8 Adding Help

8 - 1 Introduction
Once your add-on is complete, you will find that there are many details and instructions you would
like to make available to users. Online Help is an effective way to include necessary details and
instructions. It is the best way to ensure that needed information can be easily accessed from your
add-on.

Note: The Help mechanism described in this chapter requires that you have a Web browser avail-
able on your platform.

8 - 2 Creating Help
Call TecUtilHelp to launch a help file. Help can be called anywhere within your add-on,
although the typical procedure is to start from a dialog’s HelpButton callback. To add help to the
Equate add-on, create a simple HTML document to serve as your help file, naming it
equate.html.

In guicb.c, note the call to launch the help in Dialog1HelpButton_CB():

static void Dialog1HelpButton_CB(void)

{

 TecUtilLockStart(AddOnID);

 TecUtilHelp(“equate.html”,FALSE,0);

 TecUtilLockFinish(AddOnID);

}

Place equate.html in the help sub-directory below the Tecplot Home Directory, then recom-
pile and reload your add-on. When you click Help on the Equate dialog, or press F1,
equate.html will be launched in the default browser.

56

57

Loaders Versus Converters

Chapter 9 Creating a Data Loader

9 - 1 Loaders Versus Converters
Data can be imported into Tecplot using loader or converter add-ons. A loader must display a dia-
log for the user to enter the parameters needed to load the data; file name, skip values, and so forth.
A converter is used when simple proprietary data files need to be read into Tecplot and it is not nec-
essary to use complex options to decide which portions of the data should be loaded. Converters are
not as efficient as loaders because the creation of an intermediate file is a part of the operation.

9 - 2 How a Data Loader Add-on Works
A data loader is a special type of add-on which can load data into Tecplot in many customized
ways. Data can come from data files, but this is not a requirement. Tecplot provides loaders for sev-
eral popular file formats, including Fluent and CGNS. In Tecplot, all data loaders appear under the
Import option of the File menu. Data loaders sometimes have custom dialogs for collecting loading
parameters.

An add-on informs Tecplot that it is a data loader by:

• Registering as a data loader by calling the TecUtilImportAddLoader()
function. This is called from the InitTecAddOn() function in main.c.

• Exporting an interface callback function, named LoaderSelectedCall-
back, called by Tecplot when you select the Import option from the File menu.
This usually displays a dialog to collect loading parameters. After collecting
the parameters the add-on will call the loader function to load the data.

• Exporting a loading callback function, LoaderCallback, which is called
by Tecplot to load the data. This is used whenever a file is loaded by macro or
by selecting the Import option from the File menu.

After it’s been registered, the loader add-on waits for:

• The user to select it from the Import option. Then Tecplot calls the registered
interface callback.

• Tecplot to process the $!READDATASET macro command. Then Tecplot calls the
loader callback. (In this case the add-on will not display a dialog.)

58

9 - 3 Creating the Data Loader
LoadMyFile, the Tecplot add-on you will build, is a basic binary data loader. It will appear under
the Import option of Tecplot’s File menu as My File Loader. All of the examples of the source code
shown in this manual are included in the Tecplot distribution and are found in the adk/samples
sub-directory below the Tecplot home directory. LoadMyFile uses source code files created by the
CreateNewAddOn script (UNIX), or Tecplot Add-on Wizard (Windows). Our project and add-on
names will be LoadMyFile.

When running CreateNewAddOn or Tecplot Add-on Wizard use the following answers:

• Choose the language C

• Base name of the add-on loadmyfile

• Add-on name for Import menu: My File Loader

• Company Name: [Your company name]

• Type of add-on: Data Loader

• Language: C

• Add a menu callback to Tecplot?: No

• Use TGB to create a platform-independent GUI?: Yes

• Data Loader Override: No

• Dialog Title Load My File

After running the CreateNewAddOn script or Tecplot Add-on Wizard you should have the fol-
lowing files:

engine.c guibld.c guicb.c guidefs.c
main.c ADDGLBL.h GUIDEFS.h ENGINE.h gui.lay

You will also have other files specific to your platform, but you only need to edit the files listed
above. Their purpose will be explained as we proceed. At this point, verify that you can compile
your project and load it into Tecplot. If not, please see Chapter 2 “Creating Add-ons under Win-
dows,” or Chapter 3 “Creating Add-ons under UNIX.”

59

Creating the Dialog

9 - 4 Creating the Dialog
Now create the dialog which will be displayed when users select the Import option from the File
menu.

Complex data files may require several controls on the Loader dialog. An example of this is the
Fluent Data Loader. However, this tutorial is for a simpler format. The dialog will be modal and
have a field for the file name, and a Browse button next to the file name field. Since we are using
Tecplot GUI Builder (TGB), the dialog template is the Tecplot layout file gui.lay.

To do this, perform the steps below.

1. Load gui.lay into Tecplot, select Tecplot GUI Builder from the Tools
menu, then modify the layout to look as follows:

We have added a label, a text field, and a button.
There will be one variable associated with the text field: FileName. We will
change the properties of controls so that TGB will create meaningful names
for these text fields.
Note: Although the text fields and buttons are referred to as controls, they are
represented by Tecplot text objects, since they exist in a Tecplot layout file.

60

2. Double-click on the FileName text field and select Options. In the Macro
Function field, after VarName=, replace the default name by typing FileName.
This will be the base name of the FileName variable.

3. Any control on the dialog should have a meaningful name to make it easier to
set the associated actions that will occur when the user interacts with that con-
trol. Since the “...” (Browse) button has a callback, change the name of that
button to something more meaningful. Double-click on the button marked
“...” and select Options. In the Macro Function Field, after VarName=, replace
the default name by typing “Browse”. TGB will use this name when creating
the callback function.

4. You can now build the source for this layout. From the TGB dialog click Go
Build.

5. Rename the file guicb.tmp to be guicb.c.

6. Add the following statement to the top of guicb.c:
#include "ENGINE.h"

61

Implementing Dialog Callbacks

9 - 5 Implementing Dialog Callbacks
In this step we will modify the callbacks in the dialog so that it collects the file name, and verifies
that it is valid. From the dialog’s OK callback, the file name will be placed in a string list of instruc-
tions. Finally we will add a call to the LoaderCallback() function with the Instructions string list.

9- 5.1 The FileName Text Field Callback
When a text field loses the focus, a callback is received if the text has changed since the text field
received the focus. We could check that the file name is valid at that time, but instead we will check
the validity of the file name in the OK button callback. Thus, the callback
FileName_TF_D1_CB() will not be edited.

9- 5.2 The Browse Button Callback
The browse button will display a file dialog and allow the user to select a file. Make the following
changes to the Browse_BTN_D1_CB() callback function in guicb.c:

static void Browse_BTN_D1_CB(void)
{
 char *SelectedFileName = NULL;
 char *Type = “My Data”;
 char *Filter = “*.*”;

 TecUtilLockStart(AddOnID);

 if (TecUtilDialogGetFileName(SelectFileOption_ReadSingleFile,
 &SelectedFileName,Type,””,Filter))
 {
 TecGUITextFieldSetString(FileName_TF_D1, SelectedFileName);
 TecUtilStringDealloc(&SelectedFileName);
 }

 TecUtilLockFinish(AddOnID);
}

The TecUtilDialogGetFileName() function will display a file dialog and allow the user to
select a file. If you click OK the function will return TRUE, otherwise you have clicked Cancel. We
pass TecUtilDialogGetFileName() the address of a char *, which receives the file

62

name. Only if the function returns TRUE are we required to release the string using TecUtil-
StringDealloc(). When you click OK in the browse dialog, the File Name text field in the
main dialog should be filled in with the name of the selected file by the function TecGUIText-
FieldSetString().

9- 5.3 The OK Button Callback
If a valid file name was entered, we will call LoaderCallback() with the Instructions string
list which contains the file name. This loader will use Tecplot standard syntax so that if the data
loaded is saved in a layout, Tecplot will be able to save the layout with a relative path to the data.
Standard syntax requires that the information needed to load the file be stored in pairs in the string
list Instructions, where the first string defines the function of the pair and the second string
gives the value. For example, your loader could allow points to be skipped, and if the user set Skip
to “2”, your string list would have a pair of “SKIP” and “2”. Instructions for this loader
will contain four strings: “STANDARDSYNTAX”, “1.0”, “FILENAME_TOLOAD”, File-
Name. If you’re not familiar with string lists, refer to the ADK User's Manual before proceeding.
In order to understand the loader callback function, it is important to understand what string lists
are and how they work.

In guicb.c, modify the Dialog1OkButtonCallback() function as shown below:

static void Dialog1OkButton_CB(void)
{
char *FileName;
Boolean_t IsOk = TRUE;
FileName = TecGUITextFieldGetString(FileName_TF_D1);
/* check that the filename is valid */
if (FileName != NULL && strlen(FileName) > 0)
 {
 /* You could do more checking here such as testing
 * whether the file will open.
 */
 IsOk = TRUE;
 }
else
 {
 TecUtilDialogErrMsg("Choose a file name.");
 IsOk = FALSE;
 }

63

Registering Callbacks

 if (IsOk == TRUE)
 {
 StringList_pa Instructions;
 Instructions = TecUtilStringListAlloc();
 TecUtilStringListAppendString(Instructions,"STANDARDSYNTAX");
 TecUtilStringListAppendString(Instructions,"1.0");
 TecUtilStringListAppendString(Instructions,"FILENAME_TOLOAD");
 TecUtilStringListAppendString(Instructions,FileName);
 IsOk = LoaderCallback(Instructions);
 TecUtilStringDealloc(&FileName);
 TecUtilStringListDealloc(&Instructions);
 if (IsOk)
 {
 TecGUIDialogDrop(Dialog1Manager);
 }
 else
 TecUtilDialogErrMsg("Error loading the file.");
 TecUtilLockFinish(AddOnID);
 }
}

If there are any errors loading the file, then LoaderCallback() will return FALSE, and we will
not drop the dialog. LoaderCallback() will display any error message, so we will not do that
in the callback. We have to release the string returned by TecGUITextFieldGetString().

9 - 6 Registering Callbacks
Two function prototypes are generated for you in ENGINE.h:

extern Boolean_t STDCALL LoaderCallback(StringList_pa Instructions);
extern void STDCALL LoaderSelectedCallback(void);

LoaderSelectedCallback() will be called only when the Import option is selected from
the File menu. Its job will be to launch a dialog where loading parameters can be set.

Revise LoaderSelectedCallback() in engine.c as follows:

void STDCALL LoaderSelectedCallback(void)

64

{
 Boolean_t OkToLoad = TRUE;
 TecUtilLockStart(AddOnID);

 if (TecUtilDataSetIsAvailable())
 OkToLoad = TecUtilDialogMessageBox(“The current data set will be
replaced. Continue?”, MessageBox_YesNo);

 if (OkToLoad)
 {
 BuildDialog1(MAINDIALOGID);
 TecGUIDialogLaunch(Dialog1Manager);
 }

 TecUtilLockFinish(AddOnID);
}

LoaderCallback() will be called when the loader is run from the Import menu or by macro.
It is passed the Instructions string list which contains the loading instructions. Revise Load-
erCallback() in engine.c as shown below to parse the Instructions string list sent to
it.

Boolean_t STDCALL LoaderCallback(StringList_pa Instructions) /* IN
*/
{

 Boolean_t IsOk = TRUE;
 LgIndex_t Count;
 LgIndex_t InstrIndex = 1;
 char *Name = NULL;
 char *ValueString = NULL;
 char FileName[250];
 FILE *MyFile;

 TecUtilLockStart(AddOnID);
 Count = TecUtilStringListGetCount(Instructions);

 /* Because the Instructions string list has pairs of strings,

65

Registering Callbacks

 * get the functional name of the pair and the set
 * value at the same time.
 */
 while(IsOk && InstrIndex < Count)
 {
 Name = TecUtilStringListGetString(Instructions, InstrIndex);
 ValueString = TecUtilStringListGetString(Instructions,
 InstrIndex + 1);
 InstrIndex += 2;
 if (strcmp(Name, "STANDARDSYNTAX") == 0)
 {
 if(strcmp(ValueString, "1.0") == 0)
 IsOk = TRUE;
 else
 {
 IsOk = FALSE;
 TecUtilDialogErrMsg(“Error in loader”);
 }
 }
 else if(strcmp(Name, "FILENAME_TOLOAD") == 0)
 {
 strcpy(FileName,ValueString);
 if (FileName != NULL && strlen(FileName) > 0)
 {
 /* Ensure that this is a readable binary file.
 * Although this was checked when the Instructions
 * were sent from the dialog, it must be rechecked
 * here in case LoaderCallback was called from a macro
 * with invalid parameters.
 */
 MyFile = fopen(FileName, "rb");
 if (MyFile == NULL)
 {
 TecUtilDialogErrMsg("Invalid file name.");
 IsOk = FALSE;
 }

66

 }
 else
 {
 TecUtilDialogErrMsg("Invalid file name.");
 IsOk = FALSE;
 }
 }
 else
 {
 TecUtilDialogErrMsg("Invalid command.");
 IsOk = FALSE;
 }

 TecUtilStringDealloc(&Name);
 TecUtilStringDealloc(&ValueString);
 } /* End parsing Instructions String list */

Data files often contain header information that must be read by the loader to correctly load the file.
Files loaded by this example loader are binary files in block format, and all variable values are in
double precision. Each file has the following information in the header: Imax, Jmax, Kmax, num-
ber of variables and number of zones. Add the following code to LoaderCallback() after
/* End parsing Instructions String list */

 if (IsOk == TRUE) /* MyFile is still open. */
 {
 LgIndex_t NumZones;
 LgIndex_t NumVars;
 LgIndex_t IMax;
 LgIndex_t JMax;
 LgIndex_t KMax;

 LgIndex_t NumPoints;
 char MyVar[20];

 Boolean_t DeferVarCreation = TRUE;
 FieldDataType_e *VarDataTypes;

67

Registering Callbacks

 FileOffset_t CurOffset = 0;
 EntIndex_t VarIndex;
 EntIndex_t ZoneIndex;
 int ZoneOffset;
 int DataOffset = 5*sizeof(int);
 /* Data values begin after the 5 integer
 * values in the header.
 */
 StringList_pa VarNames = TecUtilStringListAlloc();

 /* Read data set information from file header. */
 fread (&IMax, sizeof(int), 1, MyFile);
 fread (&JMax, sizeof(int), 1, MyFile);
 fread (&KMax, sizeof(int), 1, MyFile);
 fread (&NumVars, sizeof(int), 1, MyFile);
 fread (&NumZones, sizeof(int), 1, MyFile);
 fclose(MyFile);

The general steps for adding field data to Tecplot are also in LoaderCallback(). They are:

1. Call TecUtilDataSetCreate(…). This requires a title for the dataset and a string
list, VarNames, containing a name for each variable.

2. Call TecUtilDataSetAddZoneX(…) once for each zone. For each zone, create
an argument list (ArgList) with any necessary information for TecUtil-
DataSetAddZoneX.

Add the code below to LoaderCallback() after “fclose (MyFile);”

 NumPoints = IMax*JMax*KMax;
 VarDataTypes = (FieldDataType_e *)
 TecUtilStringAlloc(sizeof(FieldDataType_e)
 *NumVars,
 "Var Data Types");
 for (VarIndex=1;VarIndex<=NumVars;VarIndex++)
 {
 sprintf(MyVar, "Var %d", VarIndex);
 TecUtilStringListAppendString(VarNames, MyVar);
 VarDataTypes[VarIndex - 1] = FieldDataType_Double;

68

 }
 /* Create the data set in Tecplot.
 */
 TecUtilDataSetCreate("My Data Set",
 VarNames,
 TRUE);
 for (ZoneIndex=1;ZoneIndex<=NumZones;ZoneIndex++)
 {
 /* For each zone, create an argument list (ArgList)
 * with any necessary
 * information for TecUtilDataSetAddZoneX.
 * DeferVarCreation is not necessary
 * for immediate loading of variables.
 */
 ArgList_pa ArgList;
 char ZoneTitle[20];
 ZoneOffset = ((ZoneIndex -1) * (NumPoints*NumVars)
 * sizeof(double));
 sprintf(ZoneTitle, "Zone %d", ZoneIndex);
 ArgList = TecUtilArgListAlloc();
 TecUtilArgListAppendString(ArgList, SV_NAME,
 ZoneTitle);
 TecUtilArgListAppendInt (ArgList, SV_IMAX,
 IMax);
 TecUtilArgListAppendInt (ArgList, SV_JMAX,
 JMax);
 TecUtilArgListAppendInt (ArgList, SV_KMAX,
 KMax);
 TecUtilArgListAppendInt (ArgList, SV_DEFERVARCREATION,
 DeferVarCreation);
 TecUtilArgListAppendArray (ArgList, SV_VARDATATYPE,
 (void *)VarDataTypes);
 IsOk = TecUtilDataSetAddZoneX(ArgList);
 if (VarDataTypes)
 TecUtilStringDealloc((char **)&VarDataTypes);

69

Loading the Data

 TecUtilArgListDealloc(&ArgList);

9 - 7 Loading the Data
You must enable your add-on to load values for each variable in the zone. The best method for add-
ing the variable values depends on your data and the requirements of your loader. Up to this point,
the same basic code would be used regardless of the loading method. The following code will show
how to use Auto Load on Demand, which is the preferred method for loading large binary files. A
later section called USING CUSTOM LOAD ON DEMAND will show how to revise Loader-
Callback and add other code for Custom Load on Demand. The section USING IMMEDIATE
LOADING will show how to revise LoaderCallback to use Immediate Loading.

9- 7.1 Using Auto Load on Demand
If your add-on doesn’t need to control when variables are loaded and unloaded, and if your cell-
centered variable values (if any) are listed in a form accepted by Tecplot, you should use Auto Load
on Demand. Some platforms have a different byte order, and you would need to check for this to
make your loader platform independent. However, for this exercise, we will assume that the byte
order is “Native”. You must specify the offset in the file for the first value of the current variable.
The parameter Stride is set to 1 for data in Block format, greater than one for data in Point format.
A stride greater than one is allowed only if all variables are nodal. For this exercise, assume the
Data Value Structure is ClassicPlus.

 Add the code below after the command in LoaderCallback() to deallocate the argument list
ArgList.

 int Stride;
 Boolean_t IsNativeByteOrder = TRUE
 for (VarIndex = 1; VarIndex <= NumVars; VarIndex++)
 {
 Stride = 1;
 CurOffset = sizeof(double)*(VarIndex - 1)
 * NumPoints + ZoneOffset + DataOffset;
 IsOk = TecUtilDataValueAutoLOD (ZoneIndex,
 VarIndex,
 DataValueStructure_ClassicPlus,
 FileName,
 CurOffset,
 Stride,
 IsNativeByteOrder);

70

 } /* End of Index for loop */
 } /* End of Zone for loop */
 TecUtilDataSetDefVarLoadFinish(IsOk);
 if (KMax > 1)
 TecUtilFrameSetPlotType(PlotType_Cartesian3D);
 else
 TecUtilFrameSetPlotType(PlotType_Cartesian2D);
 TecUtilRedraw(TRUE);
 TecUtilImportSetLoaderInstr(ADDON_NAME,Instructions);

 } /* End of if (IsOk) */
 TecUtilLockFinish(AddOnID);
 return (IsOk);
} /* End of LoaderCallback */

This completes the coding for using Auto Load On Demand.

9- 7.2 Using Custom Load on Demand
Custom Load On Demand is ideal for large binary data files if your add-on needs to be informed, or
to control, when Tecplot loads and unloads variables. To revise your add-on to use Auto Load on
Demand, remove all code specific to Custom Load On Demand (everything after the command in
LoaderCallback() to deallocate the argument list ArgList.)

9.7.2.1.Defining the ClientData structure for Custom Load On Demand

For Custom Load on Demand, you must place necessary information into the structure ClientDataValues. The
structure provides information about the original file and the how to load the data requested by Tecplot. This
structure must be defined in a header file. Edit ENGINE.h and add the following code before the
#endif command.

typedef struct
 {
 char *FileName;
 int CurOffset;
 int DataType;
 int NumPoints;
} ClientDataValues_s;

71

Loading the Data

9.7.2.2.Revising LoaderCallback for Custom Load on Demand

The information to place in ClientData includes the file name, the number of points, the data type, and the off-
set in the file for the first value of the current variable. The call to TecUtilDataValueCustom-
LOD() includes parameters for the zone number and variable number, the ClientData, and three
callbacks used with loading data. Tecplot will store this information for each variable, and use it each time
it needs to load that variable. Add the code below to LoaderCallback() after the command to deallo-
cate the argument list ArgList.

 /* Place necessary information for Custom Load on Demand
 * into the structure ClientData. This includes: file
 * name, the number of points, the data type,
 * and the offset in the file for the first value of the
 * current variable.
 */
 for (VarIndex = 1; VarIndex <= NumVars; VarIndex++)
 {
 ClientDataValues_s *ClientData =
 (ClientDataValues_s *)malloc
 (sizeof(ClientDataValues_s));
 ClientData->FileName = (char *) malloc(sizeof(char)
 * (strlen(FileName) +1));
 strcpy(ClientData->FileName, FileName);
 ClientData->CurOffset = sizeof(double)*(VarIndex -1)
 * NumPoints + ZoneOffset + DataOffset;
 ClientData->DataType = FieldDataType_Double;
 ClientData->NumPoints = NumPoints;
 IsOk = TecUtilDataValueCustomLOD(ZoneIndex,
 VarIndex,
 LoadOnDemandVarLoad,
 LoadOnDemandVarUnload,
 LoadOnDemandVarCleanup,
 NULL, /* GetFunction */
 NULL, /* SetFunction */
 (ArbParam_t)ClientData);
 } /* End of Index for loop */
 } /* End of Zone for loop */

72

 TecUtilDataSetDefVarLoadFinish(IsOk);
 if (KMax > 1)
 TecUtilFrameSetPlotType(PlotType_Cartesian3D);
 else
 TecUtilFrameSetPlotType(PlotType_Cartesian2D);
 TecUtilRedraw(TRUE);
 TecUtilImportSetLoaderInstr(ADDON_NAME,Instructions);

 } /* End of if (IsOk) */
 TecUtilLockFinish(AddOnID);
 return (IsOk);
} /* End of LoaderCallback */

See the ADK Reference Manual for a defintion of the parameters.

9.7.2.3.Registering Custom Load On Demand Functions

The three functions used with TecUtilDataValueCustomLOD() must be defined. The information that was
registered with the command TecUtilDataValueCustomLOD() is passed by Tecplot as part of a field
data pointer to each function each time a variable is loaded or unloaded. Add the code below to
engine.c.

/**
 * LoadOnDemandVarLoad retrieves all values for one variable
 * from a file in Block format. As soon as a value is read, it is

 * added to the Tecplot dataset.
 */
static Boolean_t STDCALL LoadOnDemandVarLoad(FieldData_pa FieldData)
{
 LgIndex_t PointIndex = 1;
 int NumValuesRead;
 ClientDataValues_s *MyClientData;
 FILE *MyFile;
 Boolean_t IsOk = TRUE;

73

Loading the Data

 REQUIRE(FieldData != NULL);
 REQUIRE(VALID_REF((ClientDataValues_s *)
 TecUtilDataValueGetClientData(FieldData)));

 MyClientData = (ClientDataValues_s *)
 TecUtilDataValueGetClientData(FieldData);
 MyFile = fopen(MyClientData->FileName, "rb");
 IsOk = (MyFile != NULL);
 if (IsOk)
 /* Go to the position in the file for the first value of
 * the variable.
 */
 IsOk = (fseek(MyFile, MyClientData->CurOffset, SEEK_SET) == 0);
 if (IsOk)
 {
 FieldDataType_e DataType = MyClientData->DataType;
 int NumPoints = MyClientData->NumPoints;
 double Value;
 for (PointIndex = 1; PointIndex <= NumPoints; PointIndex++)
 {
 NumValuesRead = fread (&Value, sizeof(double), 1, MyFile);
 if (NumValuesRead == 1)
 {
 TecUtilDataValueSetByRef(FieldData,PointIndex,Value);
 }
 else
 {
 IsOk = FALSE;
 TecUtilDialogErrMsg("Binary Value not read
 correctly.");
 }
 }
 }
 if (MyFile != NULL)
 fclose(MyFile);
 ENSURE(VALID_BOOLEAN(IsOk));

74

 return IsOk;
}

/**
 */
static Boolean_t STDCALL LoadOnDemandVarUnload
 (FieldData_pa FieldData)
{
 Boolean_t Result = TRUE;

 REQUIRE(FieldData != NULL);
 REQUIRE(VALID_REF((ClientDataValues_s *)
 TecUtilDataValueGetClientData(FieldData)));

 TRACE("Load on Demand Var Unload callback.\n");
 ENSURE(VALID_BOOLEAN(Result));
 return Result;
}

/**
 */
static void STDCALL LoadOnDemandVarCleanup(FieldData_pa FieldData)
{
 ClientDataValues_s *MyClientData;

 REQUIRE(FieldData != NULL);
 REQUIRE(VALID_REF((ClientDataValues_s *)
 TecUtilDataValueGetClientData(FieldData)));

 MyClientData = (ClientDataValues_s *)
 TecUtilDataValueGetClientData(FieldData);
 free(MyClientData->FileName);
 free(MyClientData);
 TRACE("Load on Demand Var Cleanup callback.\n");
}

75

Using Immediate Loading

This completes the coding for this add-on using Custom Load On Demand. It is recommended that
you add error checking each time you send and receive parameters to a function. Other enhance-
ments:

• Check byte order.

• Add a parameter to ClientData that would allow the loader to skip over values
to load data in Point format.

• Allow other data types besides double.

9 - 8 Using Immediate Loading
 Using Immediate Loading is less efficient than either method of Load on Demand, and will make it
slow or impossible to load large data files.

To revise your add-on to use Immediate Loading, first find the section of code shown below, and
set DeferVarCreation = FALSE.

 if (IsOk == TRUE) /* MyFile is still open. */
 {
 LgIndex_t NumZones;
 LgIndex_t NumVars;
 LgIndex_t IMax;
 LgIndex_t JMax;
 LgIndex_t KMax;

 LgIndex_t NumPoints;
 char MyVar[20];

 Boolean_t DeferVarCreation = FALSE;

Remove all code specific to Auto Load on Demand or Custom Load On Demand (everything after
the command to deallocate the argument list ArgList in LoaderCallback(), plus the Custom
Load on Demand functions). Add the code below after the command in LoaderCallback()to
deallocate the argument list ArgList.

 MyFile = fopen(FileName, "rb");
 if (MyFile == NULL)
 {

76

 TecUtilDialogErrMsg("Cannot open file for LoadBlock.");
 IsOk = FALSE;
 }

 else for (VarIndex = 1; VarIndex <= NumVars; VarIndex++)
 {
 LgIndex_t PointIndex = 1;
 int NumValuesRead;

 CurOffset = sizeof(double)*(VarIndex - 1)
 *(NumPoints) + ZoneOffset + DataOffset;
 FieldData = TecUtilDataValueGetRef(ZoneIndex, VarIndex);
 /* Go to the file position for the first value of
 * the variable.
 */
 fseek(MyFile, (long)CurOffset, 0);
 for (PointIndex = 1; PointIndex <= NumPoints; PointIndex++)
 {
 NumValuesRead = fread (&Value,
 sizeof(double),
 1,
 MyFile);
 TecUtilDataValueSetByRef(FieldData,PointIndex,Value);
 } /* End of Point for loop */
 } /* End of Var for loop */
 if (MyFile != NULL)
 fclose(MyFile);
 } /* End of Zone for loop */

 if (KMax > 1)
 TecUtilFrameSetPlotType(PlotType_Cartesian3D);
 else
 TecUtilFrameSetPlotType(PlotType_Cartesian2D);
 TecUtilRedraw(TRUE);
 TecUtilImportSetLoaderInstr(ADDON_NAME,Instructions);

77

Using Immediate Loading

 } /* End of if (IsOk) */
 TecUtilLockFinish(AddOnID);
 return (IsOk);
} /* End of LoaderCallback */

This completes the coding for using Immediate Loading.

78

79

Introduction to the SumProbe Add-on

Chapter 10 Extending Interactive User
Interface Capabilities

10 - 1 Introduction to the SumProbe Add-on
SumProbe, the add-on you will create in this chapter, is an example of an add-on which can sum up
the probed values of a selected variable. It will appear in Tecplot’s Tools menu as Sum Probed Val-
ues. When selected, a dialog will appear allowing you to specify which variable you wish to sum.

All of the examples of the source code shown in this manual are included in the Tecplot distribution
and are found in the adk/samples sub-directory below the Tecplot home directory.

SumProbe uses source code files created by the CreateNewAddOn script (UNIX), or Tecplot
Add-on Wizard (Windows).

When running CreateNewAddOn or Tecplot Add-on Wizard, answer the questions as follows:

• Project Name SumProbe

• Add-on name: Sum Probe

• Company name: [Your company name]

• Type of add-on: General Purpose

• Language: C

• Use TGB to create a platform-independent GUI?Yes

• Add a menu callback to the Tecplot “Tools” menu? Yes

• Menu text: Sum Probed Values

• Menu callback option: Launch a modeless dialog

• Dialogue Title: Sum Probe

80

We will use a TecUtil function to get the variable name to sum and TGB to create a dialog to dis-
play the total number of summed points.

After running CreateNewAddOn or Tecplot Add-on Wizard you have the following files:

guibld.c guicb.c guidefs.c main.c
ADDONGBL.h GUIDEFS.h gui.lay

You will also have other files specific to your platform, but we will only modify those above. The
purpose of each file will be explained in detail as we proceed.

Verify that you can compile your project add-on and load it into Tecplot. If you cannot, refer to
Chapter 2 “Creating Add-ons under Windows” on page 9 or Chapter 3 “Creating Add-ons under
UNIX” on page 11”

10 - 2 The MenuCallback() Function
Most add-ons contain a callback function named MenuCallback(). This is called by Tecplot
each time the add-on is selected from the Tools menu. MenuCallback() stores the code that
performs all functions of the add-on. This callback function is specified in the TecUtilMenuAd-
dOption function is passed to Tecplot in InitTecAddOn().

The TecUtilDialogGetVariables function has a built-in dialog which allows you to select
the variable to be summed. Then the newly-created dialog appears. As points are probed, the
summed total is displayed on the dialog.

Before adding the code below, create a label on the dialog which will be set to the total as the plots
are probed. (See the TGB Reference Manual for more information on adding a label to a TGB dia-
log.) Set the variable name of this label to VarName=Totalis00. Set the text string of the label to
read “The total is 0.0”

The new or modified source code is displayed in bulleted lines. If you are working along, add or
edit bulleted lines only.

Note the MenuCallback() function in main.c:

static void STDCALL MenuCallback(void)
{
 TecUtilLockStart(AddOnID);

81

The MyProbeCallback() Function

 if (TecUtilDataSetIsAvailable())
 {
 if (TecUtilFrameGetPlotType() == PlotType_Cartesian2D)
 {
 TecUtilDialogGetVariables(“Pick Variable to Sum”,
 NULL,
 NULL,
 NULL,
 &Variable,
 NULL,
 NULL);

 BuildDialog1(MAINDIALOGID);
 TecGUIDialogLaunch(Dialog1Manager);

 TecUtilProbeInstallCallback(MyProbeCallback,
 “Summing Probed Values”);
 }
 else
 TecUtilDialogErrMsg(“Plot type must be 2D cartesian.”);
 }
 else
 TecUtilDialogErrMsg(“Frame does not contain a dataset “
 “with which to probe.”);

 TecUtilLockFinish(AddOnID);
}

This example is limited to 2-D plots.

10 - 3 The MyProbeCallback() Function
The TecUtilProbeInstallCallback(MyProbeCallback, “Summing Probed
Values”) function calls the function MyProbeCallback each time a point is probed.

In main.c note the function MyProbeCallback() above MenuCallback():

82

static void STDCALL MyProbeCallback(Boolean_t IsNearestPoint)

{

 TecUtilLockStart(AddOnID);

 if (IsNearestPoint)

 {

 double ProbeValue = TecUtilProbeFieldGetValue(Variable);

 char Msg[100];

 Total = Total + ProbeValue;

 sprintf(Msg, “The total is: %f”, Total);

 CHECK(strlen(Msg) < sizeof(Msg));

 TecGUILabelSetText(Thetotalis00_LBL_D1, Msg);

 }

 else

 TecUtilDialogErrMsg(“You must hold down the Ctrl key when probing”);

 TecUtilLockFinish(AddOnID);

}

83

Exercises

Each time a point is probed the callback checks to see if it was probed while holding down Ctrl. If
it was, it gets the value of the variable, adds it to the running total, and changes the text displayed
on the dialog to reflect this.

SumProbe is complete. Recompile and load it into Tecplot.

10 - 4 Exercises
1. Enhance SumProbe to allow for interpolated values while probing.

2. Add a Clear button to the dialog to zero out the summed values.

84

85

Introduction to the AnimIPlanes Add-on

Chapter 11 Animating

11 - 1 Introduction to the AnimIPlanes Add-on
AnimIPlanes, the add-on you will create in this chapter, is an example of an add-on which can ani-
mate the I-planes of a selected set of zones. It will appear in Tecplot’s Tools menu as Animate I
Planes. AnimIPlanes will verify that the data is IJK-ordered, change the Volume mode to I-planes,
and cycle through the I-planes.

All of the example source code shown in this manual is included in the Tecplot distribution and is
found in the adk/samples sub-directory below the Tecplot home directory.

AnimIPlanes uses source code files created by the CreateNewAddOn script (UNIX), or Tecplot
Add-on Wizard (Windows).

Our project name will be “AnimIPlanes” and the add-on name will be “Animate I Planes.”

When running CreateNewAddOn or Tecplot Add-on Wizard answer the questions as follows:

• Project Name (Base name AnimIPlanes

• Add-on name: Animate I Planes

• Company name: [Your company name]

• Type of add-on: General Purpose

• Language: C

Note: For the purposes of this tutorial, it is assumed that you
have already read the chapters “Creating Add-ons Under
Windows” and/or “Creating Add-ons Under UNIX” in the
ADK User’s Manual, and that you have successfully created

and compiled a set of starter files. All of the code from this point on is plat-
form-independent, and you can work through the tutorial using either a Win-
dows or UNIX environment.

86

• Use TGB to create a platform-independent GUI?Yes

• Add a menu call back to the Tecplot “Tools” menu? Yes

• Menu text: Animate I Planes

• Menu callback option: Launch a modeless dialog

• Dialog title: Animate I Planes

After running the CreateNewAddOn script or Tecplot Add-on Wizard you should have the fol-
lowing files:

guibld.c guicb.c guidefs.c main.c
ADDGLBL.h GUIDEFS.h gui.lay

You will also have other files specific to your platform, but we will only modify those above. The
purpose of each file will be explained in detail as we proceed.

Verify that you can compile your project add-on and load it into Tecplot. If you cannot, refer to
Chapter 2 “Creating Add-ons under Windows” on page 9 or Chapter 3 “Creating Add-ons under
UNIX” on page 11

11 - 2 Creating the Dialog
Now create your main dialog. This will be displayed when Animate I Planes is selected from Tec-
plot’s Tools menu. The dialog will have two labels, one button, one text field, and a multi-selection
list. You will be able to select a specific set of zones to animate from the list, specify a skip level in
the text field, and clicking the button will perform the animation.

Before beginning, be sure that Tecplot GUI Builder (TGB) is available from Tecplot’s Tools menu.
If TGB is not available, do the following

11- 2.1 Windows
In the Tecplot Home Directory edit the file tecplot.add and add the line:

$!LoadAddOn "guibld"

11- 2.2 UNIX
Edit the file tecdev.add in your Add-on Development Root Directory and add the line:

87

Creating the Dialog

$!LoadAddOn "guibuild"

Resize the frame and edit the layout as follows:

You can edit a control by clicking on it, then choosing Object Details and editing as you would text.

Note: Although the text fields and buttons are referred to as controls, since they exist in a layout
file they are actually Tecplot text objects.

Double-click on the MLST: multi-selection list and select Options. In the Macro Function field, set
VarName=ZoneList. This will be the base name of the callback associated with the multi-selec-
tion list. Also change the Macro Function for the TF: text field to VarName=Skip, and change
the Macro Function for the Animate I Planes button to VarName=AnimPlanes.

88

The base names are truncated after 12 characters, so we specify a macro command for the button
here.

Next, The dialog title is specified in the Edit Current Frame dialog. Double-click on the dialog
frame and verify that the frame is:

89

Setting up State Variables/Initializing Dialog Fields

ID=1 MODE=MODELESS TITLE="Animate I Planes"

You can now build the source for this layout. From the TGB dialog click Go Build.

Rename the file guicb.tmp to be guicb.c (replacing the existing guicb.c with
guicb.tmp).

11 - 3 Setting up State Variables/Initializing Dialog Fields
When the dialog is launched we need to make sure that the Skip and ZoneList text fields are
filled in properly. To initialize Skip we will define the skip to be a reasonable default value and set
it every time the dialog is launched. This initialization will take place in the
Dialog1Init_CB() function. This function is called every time the dialog is launched.

Note the following line in guicb.c, just below the #include statements:

#define DEFAULT_SKIP “1”

90

and the following code used as the dialog initialization callback:

static void Dialog1Init_CB(void)

{

 TecUtilLockStart(AddOnID);

 /*<<< Add init code (if necessary) here>>>*/

 TecGUITextFieldSetString(Skip_TF_D1, DEFAULT_SKIP);

 TecUtilLockFinish(AddOnID);

}

To initialize ZoneList we will write a separate function, then call that function from the
Dialog1Init_CB() function. This function will be called elsewhere in this exercise.

The following code is above the InitTecAddOn() function:

void FillZoneList(void)

{

 if (TecUtilDataSetIsAvailable())

 {

 EntIndex_t NumZones, i;

 TecUtilDataSetGetInfo(NULL, &NumZones, NULL);

 TecGUIListDeleteAllItems(ZoneList_MLST_D1);

 for (i = 1; i <= NumZones; i++)

91

Setting up State Variables/Initializing Dialog Fields

 {

 char *ZoneName;

 TecUtilZoneGetName(i, &ZoneName);

 TecGUIListAppendItem(ZoneList_MLST_D1, ZoneName);

 TecUtilStringDealloc(&ZoneName);

 }

 }

 else

 TecGUIListDeleteAllItems(ZoneList_MLST_D1);

}

This function will fill the zone list with the zone names of the data set in the current frame. If there
is no data set, the items in the list are deleted.

This function is called in the dialog initialization callback in guicb.c. The callback should now
look like:

static void Dialog1Init_CB(void)

{

 TecUtilLockStart(AddOnID);

 /*<<< Add init code (if necessary) here>>>*/

 TecGUITextFieldSetString(Skip_TF_D1, DEFAULT_SKIP);

 FillZoneList();

 TecUtilLockFinish(AddOnID);

92

}

Since the function body of FillZoneList() is in main.c, add the following line to ADDG-
LBL.h:

EXTERN void FillZoneList(void);

11 - 4 The Animate I Planes button
When the Animate I Planes button is clicked, we want to animate the I-planes. We will create a
function called AnimatePlanes(), and add a call to that function in the
AnimatePlanes_BTN_D1_CB() callback function.

Before calling the AnimatePlanes() function we need to collect data from the dialog and
check to see that there is a data set available. The AnimatePlanes() function will take two
parameters, ZoneSet and Skip. ZoneSet will contain the zones that were selected in the dia-
log, and Skip will be the skip value that was entered in the text field:

static void AnimPlanes_BTN_D1_CB(void)

{

 TecUtilLockStart(AddOnID);

 /* Make sure there is a dataset */

 if (TecUtilDataSetIsAvailable())

 {

 LgIndex_t Count = 0;

 LgIndex_t *Selection = NULL;

 Set_pa ZoneSet = TecUtilSetAlloc(TRUE);

93

The Animate I Planes button

 /* Get the Skip value from the text field */

 char *strSkip = TecGUITextFieldGetString(Skip_TF_D1);

 /* Get the selected zones from the ZoneList */

 TecGUIListGetSelectedItems(ZoneList_MLST_D1, &Selection, &Count);

 if (Count > 0)

 {

 LgIndex_t i;

 /* Put the selected items into ZoneSet */

 for (i = 0; i < Count; i++)

 TecUtilSetAddMember(ZoneSet, Selection[i], TRUE);

 TecUtilArrayDealloc((void **)&Selection);

 }

 /* Make sure a zone has been picked */

 if (ZoneSet != NULL) /* ...do the animation */

 AnimatePlanes(ZoneSet, atoi(strSkip));

 else

94

 TecUtilDialogErrMsg(“No zones have been picked.”);

 /* Deallocate the ZoneSet and strSkip string when we are done with them */

 if (ZoneSet != NULL)

 TecUtilSetDealloc(&ZoneSet);

 if (strSkip != NULL)

 TecUtilStringDealloc(&strSkip);

 }

 else

 TecUtilDialogErrMsg(“No data set available.”);

 TecUtilLockFinish(AddOnID);

}

We collect the information from the dialog and then pass that information off to Ani-
matePlanes() to carry out the animation. Because ZoneSet is initialized to NULL, we can tell
if there were any selections. If there were not, we display an error message reading “No zones have
been picked.”

11 - 5 Writing the AnimatePlanes() Function
This function will perform the actual animation. It takes two parameters, ZoneSet and Skip.
These parameters are collected in the AnimatePlanes button callback function in main.c:

void AnimatePlanes(Set_pa ZoneSet,

 int Skip)

95

Writing the AnimatePlanes() Function

{

 LgIndex_t MaxIndex = 0;

 EntIndex_t CurZone;

 SetIndex_t NumberOfZonesInSet;

 SetIndex_t Index;

 Set_pa IJKZoneSet = TecUtilSetAlloc(TRUE);

 char *strMacroCommand;

 /* Get the number of zones in ZoneSet */

 NumberOfZonesInSet = TecUtilSetGetMemberCount(ZoneSet);

 if (TecUtilMacroIsRecordingActive() &&

 (NumberOfZonesInSet >= 1))

 {

 strMacroCommand = TecUtilStringAlloc(2000, “Macro Command”);

 strcpy(strMacroCommand, “ZONESET=”);

 }

 /*

96

 * Create a subset of ZoneSet that includes only

 * IJK Ordered Zones. Do this by looping through

 * all the zones in ZoneSet, check to see if the zone

 * is IJK Ordered. Then add the zone to IJKZoneSet

 */

 for (Index = 1; Index <= NumberOfZonesInSet; Index++)

 {

 /* Get the current zone */

 CurZone = (EntIndex_t)TecUtilSetGetMember(ZoneSet, Index);

 /* Make sure the current zone is enabled */

 if (TecUtilZoneIsEnabled(CurZone))

 {

 /* Only add the zone if it is IJK ordered */

 if (ZoneIsIJKOrdered(CurZone))

 {

 TecUtilSetAddMember(IJKZoneSet, CurZone, TRUE);

 /* Find the greatest IMax of all the valid IJK ordered zones */

 MaxIndex = MAX(MaxIndex, GetIMaxFromCurZone(CurZone));

 }

97

Writing the AnimatePlanes() Function

 if (TecUtilMacroIsRecordingActive())

 {

 sprintf(&strMacroCommand[strlen(strMacroCommand)], “%d”, CurZone);

 if (Index != NumberOfZonesInSet)

 strcat(strMacroCommand, “,”);

 }

 }

 }

 /* Only proceed if there is at least one IJK ordered zone */

 if (TecUtilSetGetMemberCount(IJKZoneSet) >= 1)

 {

 Boolean_t IsOk = TRUE;

 /* Setup the zones for animation of I-Planes */

 /* Change the cell type to planes */

 TecUtilZoneSetIJKMode(SV_CELLTYPE,

 NULL,

 IJKZoneSet,

98

 (ArbParam_t)IJKCellType_Planes);

 /* Display only the I-Planes */

 TecUtilZoneSetIJKMode(SV_PLANES,

 NULL,

 IJKZoneSet,

 (ArbParam_t)Planes_I);

 /* Make sure that the Skip is greater than or equal to one. */

 if (Skip < 1)

 Skip = 1;

 /* Do the actual animation */

 TecUtilDoubleBuffer(DoubleBufferAction_On);

 for (Index = 1; IsOk && Index <=MaxIndex; Index += Skip)

 {

 /*

 * Set the range of the I-Planes so that the

 * minimum I-Plane to display is the same as

 * the maximum displayed. Then increment

 * by Skip. This will make the I-Planes “move”

99

Writing the AnimatePlanes() Function

 */

 TecUtilZoneSetIJKMode(SV_IRANGE,

 SV_MIN,

 IJKZoneSet,

 (ArbParam_t)Index);

 TecUtilZoneSetIJKMode(SV_IRANGE,

 SV_MAX,

 IJKZoneSet,

 (ArbParam_t)Index);

 IsOk = TecUtilRedraw(TRUE);

 TecUtilDoubleBuffer(DoubleBufferAction_Swap);

 }

 TecUtilDoubleBuffer(DoubleBufferAction_Off);

 if (IsOk && TecUtilMacroIsRecordingActive())

 {

 /* At this point we have all the IJK ordered zones.

 * So all we need to add is the skip value. Add a semi-colon

 * to the end to signify the end of the IJKZoneSet information.

 */

 strcat(strMacroCommand, “; “);

100

 sprintf(&strMacroCommand[strlen(strMacroCommand)], “SKIP=%d”, Skip);

 strMacroCommand[strlen(strMacroCommand)] = ‘\0’;

 /* Record the command */

 TecUtilMacroRecordAddOnCommand(“animiplanes”, strMacroCommand);

 TecUtilStringDealloc(&strMacroCommand);

 }

 }

 TecUtilSetDealloc(&IJKZoneSet);

}

Note the use of double buffering when we do the animation. If we do not double buffer, there will
be a significant amount of flickering during animation. This is due to the time it takes to draw the
other zones. There are a few functions called above that have not yet been defined; they check to
see if the zone passed is IJK-ordered.

Note the following functions above the AnimatePlanes() function:

static Boolean_t ZoneIsIJKOrdered(EntIndex_t ZoneNum)

{

 Boolean_t IsOk;

 LgIndex_t IMax,JMax,KMax;

 TecUtilZoneGetInfo(ZoneNum,

101

Writing the AnimatePlanes() Function

 &IMax,

 &JMax,

 &KMax,

 NULL, /* XVar */

 NULL, /* YVar */

 NULL, /* ZVar */

 NULL, /* NMap */

 NULL, /* UVar */

 NULL, /* VVar */

 NULL, /* WVar */

 NULL, /* BVar */

 NULL, /* CVar */

 NULL); /* SVar */

 IsOk = (IMax > 1 && JMax > 1 && KMax > 1);

 return IsOk;

}

This function is added for convenience, so as to not clutter AnimatePlanes().

static LgIndex_t GetIMaxFromCurZone(EntIndex_t ZoneNum)

{

 LgIndex_t IMax;

102

 TecUtilZoneGetInfo(ZoneNum,

 &IMax,

 NULL, /* JMax */

 NULL, /* KMax */

 NULL, /* XVar */

 NULL, /* YVar */

 NULL, /* ZVar */

 NULL, /* NMap */

 NULL, /* UVar */

 NULL, /* VVar */

 NULL, /* WVar */

 NULL, /* BVar */

 NULL, /* CVar */

 NULL); /* SVar */

 return IMax;

}

Compile the add-on and make sure that it runs properly. If you have two frames with different data
sets, the zone list will not be updated when switching between frames.

11 - 6 Monitoring State Changes
Now we will add functionality to allow the zone list to update properly. To do this we will need to
listen for state changes. When something in Tecplot changes, such as a new top frame, Tecplot

103

Monitoring State Changes

broadcasts a message saying that there is a new top frame. We are going to add code to our add-on
to allow it to listen for these messages. This is called a State Change Callback function.

During the setup of this add-on we requested to have state change monitoring code included in the
initial build. This code was added to main.c. Now locate the function AnimIPlanesState-
ChangeCallback() in main.c. Notice that it already contains a switch statement with all the
state changes you can monitor. The cases that the add-on is concerned about are grouped together in
the state change callback:

 case StateChange_NewTopFrame :

 case StateChange_ZonesAdded :

 case StateChange_ZonesDeleted :

 case StateChange_FrameDeleted :

 case StateChange_ZoneName :

 case StateChange_DataSetReset :

A call to FillZoneList() must be performed when these state changes are detected. The
resulting code should look as follows:

void STDCALL AnimIPlanesStateChangeMonitor(StateChange_e
StateChange,

 ArbParam_t CallData)

{

 TecUtilLockStart(AddOnID);

 switch (StateChange)

 {

 case StateChange_NewTopFrame :

104

 case StateChange_ZonesAdded :

 case StateChange_ZonesDeleted :

 case StateChange_FrameDeleted :

 case StateChange_ZoneName :

 case StateChange_DataSetReset :

 {

 /*

 * State changes may come in here while the dialog

 * is down. We only want to fill the zone list

 * while the dialog is up.

 */

 if (TecGUIDialogIsUp(Dialog1Manager))

 FillZoneList();

 } break;

 default: break;

 }

 TecUtilLockFinish(AddOnID);

}

AnimIPlanes is now complete. Recompile and load into Tecplot.

105

Exercises

11 - 7 Exercises
1. Currently there is nothing to inform users they have entered an invalid number

for the skip, such as a negative number or zero. Add error checking in the text
field callback to check for a valid positive integer.

2. Check that the integer in the text field is less than or equal to the maximum I-
Max for the selected zones.

3. Allow the animation of J- and K-planes. Adding an option menu to the inter-
face with the types of planes as options would be a good place to start.

4. Add code to make the add-on remember the last skip value entered, such that
when the dialog is closed and reopened the last skip value is the default in the
text field.

5. Allow input of start and end planes. This would allow animation from a larger
plane index to a smaller index, and allow a specific range of planes to animate.

106

107

Introduction to the PolyInt Extended Curve-Fit

Chapter 12 The Polynomial Integer
Add-on

12 - 1 Introduction to the PolyInt Extended Curve-Fit
PolyInt, the Tecplot add-on you will build in this tutorial, is an example of an extended curve-fit
add-on that does not have any settings which may be configured. This add-on will add an option to
the single selection list that is launched by the Curve Type/Extended option on the Curves page of
the Mapping Style dialog.

This add-on will perform three operations. The only required operation is to calculate the curve-fit
of discrete XY-data. The second operation is to supply Tecplot with a dependent value when the
plot is probed. The third is to present a string to the XY Plot Curve Info dialog.

All of the example of source code shown in this manual is included in the Tecplot distribution and
are found in the adk/samples sub-directory below the Tecplot home directory.

12 - 2 Getting Started
PolyInt will use the following source code files. Each one will be automatically created by the
CreateNewAddOn script (UNIX) or the Tecplot Add-on Wizard (Windows). The project name
and the add-on name will both be PolyInt.

When running CreateNewAddOn or the Tecplot 360 Add-on Wizard, answer the questions as
follows:

• Project Name (Base name): PolyInt

Note: For the purposes of this tutorial, it is assumed that you
have already read the chapters “Creating Add-ons Under
Windows” and/or “Creating Add-ons Under UNIX” in the
ADK User’s Manual, and that you have successfully created

and compiled a set of starter files. All of the code from this point on is plat-
form-independent, and you can work through the tutorial using either a Win-
dows or UNIX environment.

108

• Add-on name: PolyInt

• Company Name: [Your company name]

• Type of add-on: Extended Curve-Fit

• Language: C

• Allow Configurable Settings: No

• Create callback function for more accurate probing:Yes

After running the CreateNewAddOn script or the Tecplot 360 Add-on Wizard, you should have the
following files:

engine.c main.c
ADDGLBL.h ENGINE.h

You will also have other files specific to your platform, but the files above are the only ones we will
be modifying. The purpose of each file will be explained in detail as we proceed through the tuto-
rial.

At this point, you should verify that you can compile your add-on and load it into Tecplot.

If you are unable to compile or load your add-on, we recommend that you refer to Chapter 2 “Cre-
ating Add-ons under Windows” on page 9 or Chapter 3 “Creating Add-ons under UNIX” on
page 11 in the ADK User’s Manual before proceeding.

12 - 3 Source Files
Since this add-on has no dialog, we will only be dealing with four files:

main.c, engine.c, ADDGLBL.h and ENGINE.h.

12- 3.1 File main.c
This file contains the add-on registration routine. If you open the file, you will see a call to
TecUtilCurveRegisterExtCrvFit. It is this function that registers the extended curve-fit
add-on with Tecplot. In main.c, the call to TecUtilCurveRegisterExtCrvFit should
appear as follows:

109

Source Files

 TecUtilCurveRegisterExtCrvFit(ADDON_NAME,

 XYDataPointsCallback,

 ProbeValueCallback,

 CurveInfoStringCallback,

 NULL, /* CurveSettingsCallback */

 NULL); /* AbbreviatedSettingsStringCallback */

Notice that parameters five and six are NULL. This is because this add-on has no settings which
may be configured.

Since the extended curve-fit feature is unique to Tecplot Version 9.0 and later, notice that the
InitTecAddOn() function contains version checking. This ensures that previous versions of
Tecplot cannot load extended curve-fit add-ons.

We will define the three registered callbacks in engine.c and prototype them in ENGINE.h.

12- 3.2 File ENGINE.h
Open ENGINE.h and verify that the following lines exist:

extern Boolean_t STDCALL XYDataPointsCallback(

 FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 CoordScale_e IndVCoordScale,

 CoordScale_e DepVCoordScale,

 LgIndex_t NumRawPts,

 LgIndex_t NumCurvePts,

 EntIndex_t XYMapNum,

110

 char *CurveSettings,

 double *IndCurveValues,

 double *DepCurveValues);

extern Boolean_t STDCALL CurveInfoStringCallback(

 FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 CoordScale_e IndVCoordScale,

 CoordScale_e DepVCoordScale,

 LgIndex_t NumRawPts,

 EntIndex_t XYMapNum,

 char *CurveSettings,

 char **CurveInfoString);

extern Boolean_t STDCALL ProbeValueCallback(

 FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 CoordScale_e IndVCoordScale,

 CoordScale_e DepVCoordScale,

 LgIndex_t NumRawPts,

 LgIndex_t NumCurvePts,

 EntIndex_t XYMapNum,

 char *CurveSettings,

111

Source Files

 double ProbeIndValue,

 double *ProbeDepValue);

Each of these functions will be defined in engine.c.

12- 3.3 engine.c
When the source files are created, they are filled with code that will compute a simple average of
the dependent values. This code is not needed for this add-on and should be deleted. Delete the
SimpleAverage() function and all of the code in the callback functions (do not delete the
function declarations themselves).

In engine.c we will define the three callbacks that are prototyped above. First we will deal with
the function that actually performs the curve-fit. The function is called PolyInt(). It is based on
a method given in the Stineman article from Creative Computing (July, 1980). Much of this tutorial
will focus on manipulating the data into a form that the PolyInt() function can use. The algo-
rithm used here will not be explained since it is beyond the scope of this tutorial.

The PolyInt() function takes an array that we call Data and some information about the con-
tents of the array. The Data array is separated into four separate blocks.

• Block 1: Raw independent data values.

• Block 2: Raw dependent data values.

• Block 3: Calculated independent values (based on the number of points on the
calculated curve).

• Block 4: Calculated dependent values (to be filled in by PolyInt() func-
tion).

We will also pass the indices of the start of each block, the number of raw data points, and the num-
ber of points on the calculated curve to the PolyInt() function.

Note the following code in engine.c just below the last #include statement:

/**

 * Interpolate y=f(x) using the method given in Stineman article from

112

 * Creative Computing (July 1980). At least 3 points required for

 * interpolation, if fewer then use linear interpolation...

 *

 * Data is treated as a 1 based array, while lx,ly,lxn,lyn are treated as 0

 * base.

 *

 * @param npts

 * number of original data points

 * @param lx

 * location of x data points

 * @param ly

 * location of y data points

 * @param nptn

 * number of points on the fitted curve

 * @param lxn

 * location of fitted x points

 * @param lyn

 * location of fitted y points

 * @param data

 * working array

 */

113

Source Files

void PolyInt(int npts,

 int lx,

 int ly,

 int nptn,

 int lxn,

 int lyn,

 double *data)

{

 int j,j1,i,ix,jx,kx,ixx,jxx;

 double xv,yv,dydx,dydx1,s,y0,dyj,dyj1;

 j = 1;

 j1 = j+1;

 /* Isolate the data(lx+j) and the data(lx+j+1) that bracket xv... */

 for (i=1; i<=nptn; i++)

 {

 xv = data[lxn+i];

 while (xv > data[lx+j1])

 {

 j++;

114

 j1 = j+1;

 }

 if (npts == 1)

 yv = data[ly+j];

 if (npts == 2)

 yv = data[ly+2]-(data[lx+j1]-xv)*(data[ly+j1]-data[ly+j])/

 (data[lx+j1]-data[lx+j]);

 if (npts >= 3)

 {

 /*

 * Calculate the slope at the jth point (from fitting a circle thru

 * 3 points and getting slope of circle).

 */

 ix = 1;

 jx = 2;

 kx = 3;

 if (j != 1)

 {

115

Source Files

 ix = j-1;

 jx = j;

 kx = j+1;

 }

 dydx = (((data[ly+jx]-data[ly+ix])*

 (pow(data[lx+kx]-data[lx+jx],2)+

 pow(data[ly+kx]-data[ly+jx],2))+

 (data[ly+kx]-data[ly+jx])*

 (pow(data[lx+jx]-data[lx+ix],2)+

 pow(data[ly+jx]-data[ly+ix],2)))/

 ((data[lx+jx]-data[lx+ix])*

 (pow(data[lx+kx]-data[lx+jx],2)+

 pow(data[ly+kx]-data[ly+jx],2))+

 (data[lx+kx]-data[lx+jx])*

 (pow(data[lx+jx]-data[lx+ix],2)+

 pow(data[ly+jx]-data[ly+ix],2))));

 if (j == 1)

 {

 ixx = ix;

 jxx = jx;

116

 s = (data[ly+jxx]-data[ly+ixx])/(data[lx+jxx]-data[lx+ixx]);

 if (s != 0.0)

 {

 if (!((s >= 0.0 && s > dydx) || (s <= 0.0 && s < dydx)))

 dydx = s+(fabs(s)*(s-dydx))/(fabs(s)+fabs(s-dydx));

 else

 dydx = 2.0*s-dydx;

 }

 }

 /* Calculate the slope at j+1 point. */

 ix = nptn-2;

 jx = nptn-1;

 kx = nptn;

 if (j1 != nptn)

 {

 ix = j1-1;

 jx = j1;

 kx = j1+1;

117

Source Files

 }

 dydx1 = (((data[ly+jx]-data[ly+ix])*

 (pow(data[lx+kx]-data[lx+jx],2.)+

 pow(data[ly+kx]-data[ly+jx],2.))+

 (data[ly+kx]-data[ly+jx])*

 (pow(data[lx+jx]-data[lx+ix],2.)+

 pow(data[ly+jx]-data[ly+ix],2.)))/

 ((data[lx+jx]-data[lx+ix])*

 (pow(data[lx+kx]-data[lx+jx],2.)+

 pow(data[ly+kx]-data[ly+jx],2.))+

 (data[lx+kx]-data[lx+jx])*

 (pow(data[lx+jx]-data[lx+ix],2.)+

 pow(data[ly+jx]-data[ly+ix],2.))));

 if (j1 == nptn)

 {

 ixx = jx;

 jxx = kx;

 s = (data[ly+jxx]-data[ly+ixx])/

 (data[lx+jxx]-data[lx+ixx]);

 if (s != 0.0)

118

 {

 if (!((s >= 0.0 && s > dydx1) ||

 (s <= 0.0 && s < dydx1)))

 dydx1 = s+(fabs(s)*(s-dydx1))/(fabs(s)+fabs(s-dydx1));

 else

 dydx1 = 2.0*s-dydx1;

 }

 }

 /*

 * Calculate s=slope between j and j+1 points

 * y0 = y-value if linear interp used

 * dyj = delta-y at the j-th point

 * dyj1 = delta-y at the j+1 point

 */

 s = (data[ly+j1]-data[ly+j])/(data[lx+j1]-data[lx+j]);

 y0 = data[ly+j]+s*(xv-data[lx+j]);

 dyj = data[ly+j]+dydx*(xv-data[lx+j])-y0;

 dyj1 = data[ly+j1]+dydx1*(xv-data[lx+j1])-y0;

 /* Calculate y... */

119

The XYDataPointsCallback() Function

 if (dyj*dyj1 == 0.0)

 yv = y0;

 if (dyj*dyj1 > 0.0)

 yv = y0+(dyj*dyj1)/(dyj+dyj1);

 if (dyj*dyj1 < 0.0)

 yv = y0+((dyj*dyj1*(xv-data[lx+j]+xv-data[lx+j1]))/

 ((dyj-dyj1)*(data[lx+j1]-data[lx+j])));

 }

 data[lyn+i] = yv;

 }

}

12 - 4 The XYDataPointsCallback() Function
Knowing that the PolyInt() function uses a single array containing all the raw and calculated
independent values, we must prepare this array in the XYDataPointsCallback function and
pass it on to the PolyInt() function. Once the array is passed on to PolyInt(), it will be
returned with the calculated points filled in, at which time we must extract those points from the
working array and place them into the array that Tecplot passed to the
XYDataPointsCallback() function.

See TecUtilCurveRegisterExtCrvFit() in the ADK Reference Manual for an explana-
tion of the parameters of this function.

The XYDataPointsCallback() has the following structure:

120

1. Allocate and initialize the working array, called Data.

2. Fill the working array with the raw data and the calculated independent values.

3. Pass the working array to the PolyInt() function. This will fill in the calcu-
lated dependent values.

4. Extract the data from the working array and place into the arrays that Tecplot
passed in.

5. Free the working array.

The code for the XYDataPointsCallback() is below:

Boolean_t STDCALL XYDataPointsCallback(FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 CoordScale_e IndVCoordScale,

 CoordScale_e DepVCoordScale,

 LgIndex_t NumRawPts,

 LgIndex_t NumCurvePts,

 EntIndex_t XYMapNum,

 char *CurveSettings,

 double *IndCurveValues,

 double *DepCurveValues)

{

 Boolean_t IsOk = TRUE;

 int ii;

 double *Data = NULL;

121

The XYDataPointsCallback() Function

 int TotalNumDataPts;

 TecUtilLockStart(AddOnID);

 /*

 * Data will contain all the data points and is 1 base:

 * RawIndpts

 * RawDepPts

 * IndCurveValues

 * DepCurveValues

 * Therefore, the array must be large enough to

 * contain all these points: 2*(NumRawPts+NumCurvePts).

 */

 TotalNumDataPts = 2*(NumRawPts+NumCurvePts);

 Data = malloc((TotalNumDataPts+1)*sizeof(double));

 if (Data != NULL)

 {

 /* Initialize Data to contain all zero. */

 for (ii = 0; ii < TotalNumDataPts+1; ii++)

 Data[ii] = 0;

 }

122

 else

 IsOk = FALSE;

 if (IsOk)

 {

 int lx;

 int ly;

 int lxn;

 int lyn;

 /* Setup the working array, Data. */

 PrepareWorkingArray(RawIndV,

 RawDepV,

 NumRawPts,

 NumCurvePts,

 &lx,

 &ly,

 &lxn,

 &lyn,

 Data);

 /* Perform the curve fit. */

123

The XYDataPointsCallback() Function

 PolyInt(NumRawPts,

 lx,

 ly,

 NumCurvePts,

 lxn,

 lyn,

 Data);

 /* Extract the values from Data that were placed there by the curve fit. */

 ExtractCurveValuesFromWorkingArray(NumCurvePts,

 lxn,

 lyn,

 Data,

 IndCurveValues,

 DepCurveValues);

 free(Data);

 }

 TecUtilLockFinish(AddOnID);

 return IsOk;

}

124

Notice that in this function, the CurveSettings and XYMapNum variables are never referenced.
This is because there are no settings which may be configured for this curve-fit. The only informa-
tion in this function that is required by Tecplot is the return value (TRUE or FALSE), and that the
Ind CurveValues and DepCurveValues arrays are filled. Tecplot will plot whatever values are
placed in these arrays. If the values do not make sense, the resulting plot will not make sense. The
burden is on the add-on writer to make sure that the values placed in these arrays are correct.

Also, notice that there are two functions we have referenced that must still be written. These func-
tions take care of steps 2 and 4 as outlined in the function structure above.

12 - 5 The PrepareWorkingArray() Function
This function will fill the working array, Data, with the raw data and the calculated independent
curve points. It will also return the indices within the Data array to the different blocks of data. As
stated above:

• lx: Start of the raw Independent data.

• ly: Start of the raw Dependent data.

• lxn: Start of the calculated independent data.

• lyn: Start of the calculated dependent data.

Note the following function above the XYDataPointsCallback() function.

static void PrepareWorkingArray(FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 LgIndex_t NumRawPts,

 LgIndex_t NumCurvePts,

 int *lx,

 int *ly,

 int *lxn,

 int *lyn,

125

The PrepareWorkingArray() Function

 double *Data)

{

 double FirstValidPoint;

 double LastValidPoint;

 double StepSize;

 int ii;

 /*

 * The followint are indices to start points of

 * the data blocks in the 1 based arrray, Data

 * lx - Start of the raw Independent data.

 * ly - Start of the raw Dependent data.

 * lxn - Start of the calculated independent data.

 * lyn - Start of the calculated dependent data.

 *

 * The PolyInt function treats lx,ly,lxn,lyn as 0 base

 * indices, but treats Data as a 1 base array.

 */

 *lx = 0;

 *ly = NumRawPts;

 *lxn = 2*NumRawPts;

126

 *lyn = 2*NumRawPts+NumCurvePts;

 /* Fill the first blocks of the Data array with the Raw Data Values. */

 for (ii = 1; ii <= NumRawPts; ii++)

 {

 Data[*lx+ii] = TecUtilDataValueGetByRef(RawIndV, ii);

 Data[*ly+ii] = TecUtilDataValueGetByRef(RawDepV, ii);

 }

 /*

 * Calculate the size of steps to take while stepping

 * along the independent variable range.

 */

 TecUtilDataValueGetMinMaxByRef(RawIndV,

 &FirstValidPoint,

 &LastValidPoint);

 StepSize = (LastValidPoint-FirstValidPoint)/(NumCurvePts-1);

 /*

 * Fill the third block of the Data array with the

 * calculated independent values.

127

The ExtractCurveValuesFromWorkingArray() Function

 */

 for (ii = 1; ii <= NumCurvePts; ii++)

 {

 double IndV = FirstValidPoint + (ii-1)*StepSize;

 if (IndV > LastValidPoint)

 IndV = LastValidPoint;

 Data[*lxn+ii] = IndV;

 }

}

12 - 6 The ExtractCurveValuesFromWorkingArray() Function
This function will extract the calculated data from the working array, Data, and place it in the
arrays that were passed to the XYDataPointsCallback() function by Tecplot. Tecplot will
then use these values to plot the curve.

Note the following function above the XYDataPointsCallback() function.

static void ExtractCurveValuesFromWorkingArray(LgIndex_t
NumCurvePts,

 int lxn,

 int lyn,

 double *Data,

 double *IndCurveValues,

 double *DepCurveValues)

{

128

 int ii;

 for (ii = 1; ii <= NumCurvePts; ii++)

 {

 IndCurveValues[ii-1] = Data[lxn+ii];

 DepCurveValues[ii-1] = Data[lyn+ii];

 }

}

At this point you should compile the add-on and load it into Tecplot. The curve-fit add-on is com-
plete at this point. However, there is other functionality that may be added. In the following sec-
tions we will add the probe value callback, and the curve information callback.

12 - 7 The ProbeValueCallback() Function
The ProbeValueCallback() function is not required since Tecplot will perform a linear
interpolation on the points that your curve-fit returns. However, if you have very few points in your
curve, the value returned by Tecplot’s built-in Probe function will return a value that is not on the
actual curve, but on the approximated curve.

To avoid this problem, we will write the ProbeValueCallback. This callback will return a
value that is actually calculated by your curve-fit. The method we use for this particular curve-fit is
outlined below:

The ProbeValueCallback has the following structure:

1. Check that the probed independent value is within the bounds of the raw data.

2. If the number of curve points approximating the curve is small, reassign the
number of points approximating the curve to be larger.

3. Allocate and initialize the working array, called Data.

4. Fill the working array with the raw data and the calculated independent values.

129

The ProbeValueCallback() Function

5. Insert the probed independent value into the working array, so a curve-fit is
done at the actual probed independent value. Save the relative location of this
value within the working array.

6. Pass the working array to the PolyInt() function. This will fill in the calcu-
lated dependent values.

7. Extract the probed dependent value from the working array, using the relative
location saved in step 5.

8. Free the working array.

Note the following code in engine.c:

/**

 */

#define NUMPTSFORPROBING 3000

/**

 * This functions follows a similar process as the XYDataPointsCallback,

 * except it manually inserts ProbeIndValue in the list of the

 * independent curve points. It stores the index in the Data array for

 * that value and uses that relative location to find the calculated

 * ProbeDepValue.

 */

Boolean_t STDCALL ProbeValueCallback(FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 CoordScale_e IndVCoordScale,

130

 CoordScale_e DepVCoordScale,

 LgIndex_t NumRawPts,

 LgIndex_t NumCurvePts,

 EntIndex_t XYMapNum,

 char *CurveSettings,

 double ProbeIndValue,

 double *ProbeDepValue)

{

 Boolean_t IsOk = TRUE;

 int ii;

 double FirstValidPoint;

 double LastValidPoint;

 double *Data = NULL;

 int TotalNumDataPts;

 TecUtilLockStart(AddOnID);

 /* Make sure the probe is within the bounds of the data. */

 TecUtilDataValueGetMinMaxByRef(RawIndV,

 &FirstValidPoint,

 &LastValidPoint);

131

The ProbeValueCallback() Function

 IsOk = (ProbeIndValue >= FirstValidPoint &&

 ProbeIndValue <= LastValidPoint);

 if (IsOk)

 {

 /*

 * If the Curve has too few points, crank the number of points

 * on the curve up, so we get a good approximation of the curve.

 */

 NumCurvePts = MAX(NUMPTSFORPROBING, NumCurvePts);

 TotalNumDataPts = 2*(NumRawPts+NumCurvePts);

 Data = malloc((TotalNumDataPts+1)*sizeof(double));

 if (Data != NULL)

 {

 /* Initialize Data to contain all zero. */

 for (ii = 0; ii < TotalNumDataPts+1; ii++)

 Data[ii] = 0;

 }

 else

 IsOk = FALSE;

132

 }

 if (IsOk)

 {

 int lx,ly,lxn,lyn;

 int ProbeValueIndex = -1;

 PrepareWorkingArray(RawIndV,

 RawDepV,

 NumRawPts,

 NumCurvePts,

 &lx,

 &ly,

 &lxn,

 &lyn,

 Data);

 IsOk = InsertProbeValueInWorkingArray(ProbeIndValue,

 NumCurvePts,

 lxn,

 &ProbeValueIndex,

 Data);

133

The ProbeValueCallback() Function

 if (IsOk && ProbeValueIndex != -1)

 {

 /* Perform the curve fit. */

 PolyInt(NumRawPts,

 lx,

 ly,

 NumCurvePts,

 lxn,

 lyn,

 Data);

 /* The dependent value is in the same relative location. */

 /* as the probed independent value. */

 *ProbeDepValue = Data[lyn+ProbeValueIndex];

 }

 }

 if (Data != NULL)

 free(Data);

 TecUtilLockFinish(AddOnID);

 return IsOk;

}

134

12 - 8 The InsertProbeValueInWorkingArray() Function
This function inserts the probed independent value into the working array so that the curve-fit will
be performed exactly at the probed value. This is done by marching through the calculated
independent values, and when two values that surround the probed value are found, the probed
value replaces the lesser of the two surrounding values in the working array. Also, the relative
location of the probed value is saved, so that the calculated dependent value can be extracted from
the working array.

Note the following code above the ProbeValueCallback() in engine.c:

static Boolean_t InsertProbeValueInWorkingArray(double
ProbeIndValue,

 LgIndex_t NumCurvePts,

 int lxn,

 int *ProbeValueIndex,

 double *Data)

{

 Boolean_t Found = FALSE;

 int ii;

 for (ii = 1; ii < NumCurvePts; ii++)

 {

 /* If the probed value is between the data points record its location. */

 if (ProbeIndValue >= Data[lxn+ii] &&

 ProbeIndValue <= Data[lxn+ii+1])

 {

135

The CurveInfoStringCallback() Function

 *ProbeValueIndex = ii;

 Data[lxn+ii] = ProbeIndValue;

 Found = TRUE;

 break;

 }

 }

 return Found;

}

Compile and load the add-on into Tecplot. Now, you should be able to probe and have a real curve
value be returned rather than the linear interpolation computed by Tecplot.

12 - 9 The CurveInfoStringCallback() Function
The CurveInfoStringCallback() function will pass a string to the XY-Plot Curve Info
dialog. This string can be any information you wish to present to the dialog. Typical information in
this dialogs are the curve coefficients. Since it is beyond the scope of this tutorial to calculate the
coefficients of the curve, we will simply present a string to the dialog.

Examine the following code in engine.c:

Boolean_t STDCALL CurveInfoStringCallback(FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 CoordScale_e IndVCoordScale,

 CoordScale_e DepVCoordScale,

 LgIndex_t NumRawPts,

 EntIndex_t XYMapNum,

136

 char *CurveSettings,

 char **CurveInfoString)

{

 Boolean_t IsOk = TRUE;

 *CurveInfoString = TecUtilStringAlloc(1000, “CurveInfoString”);

 strcpy(*CurveInfoString, “Information about the curve goes here.\n”);

 strcat(*CurveInfoString, “Such as curve coefficients.”);

 return IsOk;

}

Again, compile and load the add-on into Tecplot. Upon running Tecplot, load rainfall.plt and
change the curve type to Extended/PolyInt. Now, call up the XY-Plot Curve Info dialog. Notice that
the string we added is now in the dialog.

As an exercise, add error messages to the
XYDataPointsCallback() and the
ProbeValueCallback()functions if
they end up returning FALSE. This will
inform the user that there was an error.

137

Introduction to the SimpAvg Extended Curve-Fit

Chapter 13 The Simple Average Add-
on

13 - 1 Introduction to the SimpAvg Extended Curve-Fit
SimpAvg, the Tecplot add-on you will build in this tutorial, is an example of an extended curve-fit
add-on that has settings which may be configured. The setting that we will be configuring in this
add-on is the independent variable range. This curve-fit add-on will compute the average of the
data within the specified independent variable range.

It is also assumed that you have created an add-on that has a dialog. If you have not done so, see
Chapter 5, “The Equate Add-on.”

13 - 2 Getting Started
SimpAvg will use the following source code files. Each one will be automatically created by the
CreateNewAddOn script (UNIX) or the Tecplot Add-on Wizard (Windows). The project and
add-on names will both be SimpAvg.

When running CreateNewAddOn or the Tecplot Add-on Wizard, answer the questions as fol-
lows:

• Project Name (Base name): SimpAvg

• Add-on Name: SimpAvg

• Company Name: [Your company name]

Note: For the purposes of this tutorial, it is assumed that you
have already read the chapters “Creating Add-ons Under
Windows” and/or “Creating Add-ons Under UNIX” in the
ADK User’s Manual, and that you have successfully created

and compiled a set of starter files. All of the code from this point on is plat-
form-independent, and you can work through the tutorial using either a Win-
dows or UNIX environment.

138

• Type of Add-on: Extended Curve-Fit

• Language: C

• Allow Configurable Settings: Yes

• Create Callback Function for More Accurate Probing:No

After running the CreateNewAddOn script or Tecplot Add-on Wizard, you should have the fol-
lowing files:

engine.c main.c guibld.c guicb.c
guidefs.c ADDGLBL.h ENGINE.h GUIDEFS.h

You will also have other files specific to your platform, but the files above are the only ones we will
be dealing with. The purpose of each file will be explained in detail as we proceed through the tuto-
rial.

At this point, you should verify that you can compile your add-on and load it into Tecplot.

If you are unable to compile or load your add-on, we recommend that you refer to Chapter 2 “Cre-
ating Add-ons under Windows” on page 9 or Chapter 3 “Creating Add-ons under UNIX” on
page 11 before proceeding.

13 - 3 Designing the Add-on
Since this curve-fit will have settings which may be configured, we will need to make some
decisions before writing the add-on.

13- 3.1 What are the settings going to be?

• Use an Independent Variable Range.

• What is the IndVarMin?

• What is the IndVarMax?

13- 3.2 What are the default settings?

• UseIndVarRange: FALSE.

• IndVarMin: -LARGEDOUBLE (-1E+150).

139

Handling the CurveSettings String

• IndVarMax: LARGEDOUBLE (1E+150).

13- 3.3 What is the syntax for the CurveSettings string?

• Newline delimited (spaces delimiting the ‘=’ are required).

• Example:

UseIndVarRange = TRUE\n
IndVarMin = 2\n
IndVarMax = 7\n

13- 3.4 How to maintain the values of the settings?

• The settings string will be maintained by Tecplot; however, we will create a
struct as follows to hold the values that are contained in the settings string.

typedef struct

 {

 Boolean_t UseIndVarRange;

 double IndVarMin;

 double IndVarMax;

 } CurveParams_s;

• This structure will be placed in ADDGLBL.h.

13 - 4 Handling the CurveSettings String
The first thing we will do is lay some groundwork for how to handle the CurveSettings string.
Since this string is maintained by Tecplot and is updated by the add-on, our add-on must know how
to parse the string.

We will start with the function that creates the string. This function will make use of the
CurveParams_s structure. If you have not done so already, add the CurveParams_s struc-
ture, as defined above, to ADDGLBL.h.

140

Now that the CurveParams_s structure is in place, we will create a function in engine.c
called CreateCurveSettingsString. This function will take one parameter, the
CurveParams_s structure, and return a string based on the values of the structure. The function
is written as follows:

Add this prototype to ENGINE.h:

char *CreateCurveSettingsString(CurveParams_s CurveParams);

The following code is in engine.c:

/**

 * Creates a CurveSettings string based on the values

 * in the CurveParams structure that is passed in.

 */

char *CreateCurveSettingsString(CurveParams_s CurveParams)

{

 char S[1000];

 char *CurveSettings;

 if (CurveParams.UseIndVarRange)

 strcpy(S,”UseIndVarRange = TRUE\n”);

 else

 strcpy(S,”UseIndVarRange = FALSE\n”);

 sprintf(&S[strlen(S)], “IndVarMin = %G\n”, CurveParams.IndVarMin);

 sprintf(&S[strlen(S)], “IndVarMax = %G\n”, CurveParams.IndVarMax);

141

Handling the CurveSettings String

 S[strlen(S)] = ‘\0’;

 CurveSettings = TecUtilStringAlloc(strlen(S), “CurveSettings”);

 strcpy(CurveSettings, S);

 return CurveSettings;

}

Notice that this function calls TecUtilStringAlloc. The calling function is responsible for
de-allocating the string returned by CreateCurveSettingsString. Also notice that the
string is newline delimited as discussed above.

Now that we have a function that creates the CurveSettings string, create a function that will
parse the newline delimited string and populate the CurveParams_s structure. The function that
we will be writing will use several convenience functions that are defined in adkutil.h. Simple,
add the line:

#include “ADKUTIL.h”

at the top of engine.c.

The function that parses the CurveSettings string will take three parameters. The first is
XYMapNum, which is the XY-map that is currently being operated on. The second is the Curve-
Settings string. The third is a pointer to the CurveParams_s structure. This function will not
only parse the CurveSettings string, but also repair the string if the syntax is incorrect.

The following code is in engine.c:

/**

 * This function makes use of functions found in the

 * adkutil.c module to parse the CurveSettings string.

 */

142

void GetValuesFromCurveSettings(EntIndex_t XYMapNum,

 char *CurveSettings,

 CurveParams_s *CurveParams)

{

 Boolean_t IsOk = TRUE;

define MAXCHARS 50

 char Command[MAXCHARS+1];

 char ValueString[MAXCHARS+1];

 char *CPtr;

 char *ErrMsg = NULL;

 if (CurveSettings != NULL && strlen(CurveSettings) > 0)

 {

 CPtr = CurveSettings;

 while (IsOk && *CPtr)

 {

 if (GetArgPair(&CPtr,

 Command,

 ValueString,

 MAXCHARS,

 &ErrMsg))

143

Handling the CurveSettings String

 {

 if (Str_ustrcmp(Command, “USEINDVARRANGE”) == 0)

 {

 Boolean_t UseRange;

 IsOk = Macro_GetBooleanArg(Command,

 ValueString,

 &UseRange,

 &ErrMsg);

 if (IsOk)

 CurveParams->UseIndVarRange = UseRange;

 }

 else if (Str_ustrcmp(Command, “INDVARMIN”) == 0)

 {

 double Min;

 IsOk = Macro_GetDoubleArg(Command,

 ValueString,

 -LARGEDOUBLE,

 LARGEDOUBLE,

 &Min,

 &ErrMsg);

 if (IsOk)

144

 CurveParams->IndVarMin = Min;

 }

 else if (Str_ustrcmp(Command, “INDVARMAX”) == 0)

 {

 double Max;

 IsOk = Macro_GetDoubleArg(Command,

 ValueString,

 -LARGEDOUBLE,

 LARGEDOUBLE,

 &Max,

 &ErrMsg);

 if (IsOk)

 CurveParams->IndVarMax = Max;

 }

 else

 {

 ErrMsg = TecUtilStringAlloc((strlen(Command)+100),

 “error message”);

 sprintf(ErrMsg, “Unknown argument: %s.”, Command);

 IsOk = FALSE;

 }

145

Handling the CurveSettings String

 }

 else /* GetArgPair Failed. */

 IsOk = FALSE;

 }

 }

 else /* CurveSettings is an invalid string. */

 IsOk = FALSE;

 /* Repair the string. Display the Error Message if needed. */

 if (!IsOk)

 {

 char *NewCurveSettings = NULL;

 InitializeCurveParams(CurveParams);

 NewCurveSettings = CreateCurveSettingsString(*CurveParams);

 if (NewCurveSettings != NULL)

 {

 TecUtilCurveSetExtendedSettings(XYMapNum,NewCurveSettings);

 TecUtilStringDealloc(&NewCurveSettings);

 }

 if (ErrMsg != NULL)

146

 {

 TecUtilDialogErrMsg(ErrMsg);

 TecUtilStringDealloc(&ErrMsg);

 }

 }

}

Notice at the bottom of this function we repair the CurveSettings string if it was invalid. It
could be that the syntax was wrong, or that the string had not yet been initialized. Either way, we
call the function InitializeCurveParams() in which we setup the CurveParams_s
structure with default values. Then, we create a new CurveSettings string, which is con-
structed with the default values. Finally, we set the CurveSettings string for the current XY-
map, XYMapNum, by calling TecUtilCurveSetExtendedSettings().

13 - 5 The InitializeCurveParams() Function
Examine the following code in engine.c:

void InitializeCurveParams(CurveParams_s *CurveParams)

{

 CurveParams->UseIndVarRange = FALSE;

 CurveParams->IndVarMin = -LARGEDOUBLE;

 CurveParams->IndVarMax = LARGEDOUBLE;

}

Now that we have the laid groundwork for handling the CurveSettings string, we can move on
to creating the rest of the add-on.

147

Registering the Add-on with Tecplot

13 - 6 Registering the Add-on with Tecplot
The first thing that must happen when the add-on is loaded into Tecplot is that it must be registered.
In main.c there is a function:

 TecUtilCurveRegisterExtCrvFit(ADDON_NAME,

 XYDataPointsCallback,

 NULL, /* ProbeValueCallback */

 CurveInfoStringCallback,

 CurveSettingsCallback,

 AbbreviatedSettingsStringCallback);

This function will register the curve-fit add-on with Tecplot. Notice that parameter three is NULL.
This is because we are not adding the ProbeValueCallback.

Notice the version checking code in main.c as well. This is required since the extended curve-fit
feature is unique to Tecplot Versions 9 and later.

At this point verify that the add-on will compile and load into Tecplot.

13 - 7 Creating the Dialog
In this step we will create the dialog that will be displayed when the user clicks Curve Settings on
the Mapping/Zone Style’ Curves page when the Curve Type is of type SimpAvg. Please note that
we highly recommend that the curve-fit dialog be modal.

The dialog will have five controls, one toggle, two text fields, and two labels.

148

1. Load gui.lay into Tecplot, select Tecplot GUI Builder from the Tools
menu and edit the layout as follows:

There will be callbacks associated with each of the text fields, and the toggle
button. So that TGB will create meaningful variable names for these controls,
we will change their properties in Tecplot. Also, notice that the
CurveParams_s structure has members for each text field and the toggle.
Note: Although the text fields and buttons are referred to as controls, they are
in reality Tecplot text field objects, since they exist in a layout file.

2. Double-click on the Use Independent Variable Range toggle and select
Options. In the Macro Function field, type VarName=UseIndVarRange.
This will give the callback a meaningful name.

3. Appropriate names for the text fields are IndVarMin and IndVarMax.
Although we will not be performing any operations in the text field callbacks,
giving them meaningful names is recommended. Set the labelnames to “Var-
Name=Min” and “VarName=Max”.

4. Now, double-click on the dialog frame and verify that the frame name is as fol-
lows:

ID=1 MODE=MODAL TITLE=“Simple Average”

5. Click Go Build on the TGB dialog.

Now that TGB has created new stub files, be sure to copy the toggle and text field callbacks from
guicb.tmp into guicb.c.

13 - 8 Launching and Initializing the Dialog
The add-on dialog is launched by the CurveSettingsCallback() function in engine.c.
The parameter XYMapSet is the set of XY-maps that were selected in the Plot-Attributes dialog at
the time Curve Settings was clicked. The parameter XYMapSettings is a string list containing
the CurveSettings strings of all the XY-maps in the set, XYMapSet.

149

Launching and Initializing the Dialog

When Curve Settings is clicked, the function CurveSettingsCallback() is called by Tec-
plot. In this function we will save the XYMapSet and XYMapSettings so we can use them later
in the guicb.c module. These variables are needed in guicb.c in order to properly initialize
the dialog fields.

In engine.c verify that CurveSettingsCallback() is as follows:

void STDCALL CurveSettingsCallback(Set_pa XYMapSet,

 StringList_pa XYMapSettings)

{

 TecUtilLockStart(AddOnID);

 /*

 * Save off XYMapSettings and SelectedXYMaps for use

 * in the functions in guicb.c

 */

 GlobalCurve.XYMapSet = XYMapSet;

 GlobalCurve.XYMapSettings = XYMapSettings;

 /* Build and Launch the dialog */

 BuildDialog1(MAINDIALOGID);

 TecGUIDialogLaunch(Dialog1Manager);

 TecUtilLockFinish(AddOnID);

150

}

GlobalCurve is a global structure that maintains the curve settings when the dialog is launched.
This structure must be declared in ENGINE.h as follows:

typedef struct

 {

 StringList_pa XYMapSettings;

 Set_pa XYMapSet;

 } GlobalCurve_s;

Now declare the variable GlobalCurve in engine.c. Just below the #include statements in
engine.c and guicb.c, type the following:

GlobalCurve_s GlobalCurve;

Finally, make sure the line:

#include “ENGINE.h”

exists in guicb.c.

13- 8.1 Initializing the Dialog
Initialization of the dialog is taken care of in guicb.c in the function Dialog1Init_CB().
When initializing the dialog, we must place the correct values into each field, and we must also set
the sensitivities of each field. In the case of this dialog the sensitivities are as follows:

• UseIndVarRange: Toggle, always active.

• IndVarMin: Text field, active when UseIndVarRange is checked.

• IndVarMax: Text field, active when UseIndVarRange is checked.

• Min: Label, active when UseIndVarRange is checked.

151

Launching and Initializing the Dialog

• Max: Label, active when UseIndVarRange is checked.

To set the sensitivities we create the following function in guicb.c. Be sure this function is
placed above the Dialog1Init_CB() function:

static void UpdateMainDialogSensitivities(void)

{

 Boolean_t Sensitive = TecGUIToggleGet(UseIndVarRan_TOG_D1);

 TecGUISetSensitivity(IndVarMin_TF_D1, Sensitive);

 TecGUISetSensitivity(IndVarMax_TF_D1, Sensitive);

 TecGUISetSensitivity(Min_LBL_D1, Sensitive);

 TecGUISetSensitivity(Max_LBL_D1, Sensitive);

}

If only one XY-map is selected, the XYMapSettings string list will have only one member, and
that member will be the CurveSettings for that mapping. However, when there is more than
one mapping selected, and they have different curve settings, how do we decide to initialize the
fields on the dialog? Use the following method:

• If all mappings have the same values for any particular field, that value will be
used.

• If the selected mappings have different values for any particular field, the
default value is used.

To help initialize the fields, we will create a function that will determine the proper value for each
variable. The function will then return the appropriate value: the default value if the maps have dif-
ferent settings for that value, or the value that is set if all maps have the same setting for that value.
The function is defined below.

The following function is in guicb.c:

152

static void InitializeGUICurveParams(CurveParams_s *CurveParamsPtr)

{

 char *CurveSettings = NULL;

 CurveParams_s OrigCurveParams;

 Boolean_t UseIndVarRangeIsSame = TRUE;

 Boolean_t IndVarMinIsSame = TRUE;

 Boolean_t IndVarMaxIsSame = TRUE;

 int ii;

 int NumMembers;

 /* Get the CurveParams associated with the first mapping. */

 CurveSettings = TecUtilStringListGetString(GlobalCurve.XYMapSettings, 1);

 GetValuesFromCurveSettings(

 (EntIndex_t)TecUtilSetGetNextMember(GlobalCurve.XYMapSet,TECUTILSET-
NOTMEMBER),

 CurveSettings,

 &OrigCurveParams);

 if (CurveSettings != NULL)

 TecUtilStringDealloc(&CurveSettings);

 NumMembers = TecUtilStringListGetCount(GlobalCurve.XYMapSettings);

153

Launching and Initializing the Dialog

 /*

 * Compare the value of the first mapping with all the other mappings.

 * This loop will not be done if there is only one mapping selected.

 */

 for (ii = 2; ii <= NumMembers; ii++)

 {

 CurveParams_s TmpParams;

 CurveSettings = TecUtilStringListGetString(GlobalCurve.XYMapSettings, ii);

 GetValuesFromCurveSettings(

 (EntIndex_t)TecUtilSetGetNextMember(GlobalCurve.XYMapSet, ii),

 CurveSettings,

 &TmpParams);

 if (UseIndVarRangeIsSame)

 UseIndVarRangeIsSame = (TmpParams.UseIndVarRange ==

 OrigCurveParams.UseIndVarRange);

 if (IndVarMinIsSame)

 IndVarMinIsSame = (TmpParams.IndVarMin == OrigCurveParams.IndVarMin);

 if (IndVarMaxIsSame)

 IndVarMaxIsSame = (TmpParams.IndVarMax == OrigCurveParams.IndVarMax);

154

 if (CurveSettings != NULL)

 TecUtilStringDealloc(&CurveSettings);

 }

 /*

 * Initialize the CurveParamsPtr to the default values.

 * If all mappings have the same value for a particular parameter,

 * use that value instead.

 */

 InitializeCurveParams(CurveParamsPtr);

 if (UseIndVarRangeIsSame)

 CurveParamsPtr->UseIndVarRange = OrigCurveParams.UseIndVarRange;

 if (IndVarMinIsSame)

 CurveParamsPtr->IndVarMin = OrigCurveParams.IndVarMin;

 if (IndVarMaxIsSame)

 CurveParamsPtr->IndVarMax = OrigCurveParams.IndVarMax;

}

155

Making the Dialog Operational

Finally we will add a function to initialize the dialog fields, which will be called from the
Dialog1Init_CB() function, as described below. This function also calls InitializeGUICurve-
Params(), which was previously defined.

The following function is in guicb.c below the UpdateMainDialogSensitivities()
and below the InitializeGUICurveParams() function:

static void UpdateMainDialog(void)

{

 CurveParams_s CurveParams;

 InitializeGUICurveParams(&CurveParams);

 TecGUIToggleSet(UseIndVarRan_TOG_D1,CurveParams.UseIndVarRange);

 TecGUITextFieldSetDouble(IndVarMin_TF_D1,CurveParams.IndVarMin,”%G”);

 TecGUITextFieldSetDouble(IndVarMax_TF_D1,CurveParams.IndVarMax,”%G”);

 UpdateMainDialogSensitivities();

}

At this point it is recommended that you compile and run your add-on to make sure that the fields
and sensitivities are initialized correctly. The dialog should appear with the Use Independent Vari-
able Range toggle off, and the remaining controls should be insensitive. Using the Use Independent
Variable Range toggle will not change the sensitivities of the dialog at this point.

13 - 9 Making the Dialog Operational
To make the dialog fully operational, there are two things that must be done. The first is to update
the sensitivities of the text field controls when Use Independent Variable Range toggle is clicked.
The second is to make the dialog set the values when OK is clicked.

13- 9.1 Updating the Sensitivities
To be sure that the text field sensitivities are updated when the toggle button is pressed, include the
following code:

156

static void UseIndVarRan_TOG_D1_CB(const int *I)

{

 TecUtilLockStart(AddOnID);

 /*

 * Make sure to update the sensitivities when

 * the toggle button is pressed.

 */

 UpdateMainDialogSensitivities();

 TecUtilLockFinish(AddOnID);

}

The process to follow when OK is clicked is:

1. Collect the information from the dialog.

2. Create a new CurveSettings string.

3. Call TecUtilXYMapSetCurve() with the appropriate parameters to set
the extended curve settings for the set of XY-maps.

4. Drop the dialog.

The following function collects the information from the dialog and places it into the Curve-
Params structure.

The following function is in guicb.c above the Dialog1OkButton_CB() function:

static void AssignCurveParams(CurveParams_s *CurveParams)

{

157

Making the Dialog Operational

 CurveParams->UseIndVarRange = TecGUIToggleGet(UseIndVarRan_TOG_D1);

 /*

 * Note this function returns a boolean alerting user whether or not

 * input value is legitimate. Some error checking may be added here.

 */

 TecGUITextFieldGetDouble(IndVarMin_TF_D1,&CurveParams->IndVarMin);

 TecGUITextFieldGetDouble(IndVarMax_TF_D1,&CurveParams->IndVarMax);

}

The Dialog1OkButton_CB() function to look as follows:

static void Dialog1OkButton_CB(void)

{

 /* Only unlock tecplot here because a modal dialog was launched. */

 /* When curve settings change, Tecplot must be informed of the change. */

 char *CurveSettings = NULL;

 CurveParams_s CurveParams;

 /* Assign the new curve parameters from the dialog settings. */

 AssignCurveParams(&CurveParams);

158

 /* Create the Curve Settings string from the new curve parameters. */

 CurveSettings = CreateCurveSettingsString(CurveParams);

 if (CurveSettings != NULL)

 {

 EntIndex_t Map;

 TecUtilSetForEachMember(Map, GlobalCurve.XYMapSet)

 {

 TecUtilCurveSetExtendedSettings(Map, CurveSettings);

 }

 TecUtilStringDealloc(&CurveSettings);

 }

 TecGUIDialogDrop(Dialog1Manager);

 TecUtilLockFinish(AddOnID);

}

At this point, the dialog should be fully functional. The dialog will be initialized with the correct
values and sensitivities. The sensitivities will be updated correctly, and Tecplot will be informed
when the CurveSettings string is changed.

159

Updating the Mapping/Zone Style Dialog

13 - 10 Updating the Mapping/Zone Style Dialog
To update the Mapping/Zone Style dialog, we move back to the engine.c module. The
CurveSettings field of the Mapping/Zone Style dialog will be filled with the string returned by
the AbbreviatedSettingsStringCallback() function. If this function is undefined, or
returns a value of NULL, the CurveSettings string that Tecplot stores will be used in the
Mapping/Zone Style dialog.

To create this string, we will evaluate the CurveSettings string and create a legible output
string. The string we will produce will look like:

• If using the Independent Variable Range, IndVarMin = 2 and IndVarMax = 7:

 “IndVarRange: Min = 2; Max = 7”

• If not using the Independent Variable Range:

 “No IndVarRange”

void STDCALL AbbreviatedSettingsStringCallback(EntIndex_t XYMapNum,

 char *CurveSettings,

 char **AbbreviatedSettings)

{

 CurveParams_s CurveParams;

 char *S;

 TecUtilLockStart(AddOnID);

 GetValuesFromCurveSettings(XYMapNum,

 CurveSettings,

 &CurveParams);

 S = TecUtilStringAlloc(80, “Abbreviated Settings”);

160

 if (CurveParams.UseIndVarRange)

 {

 sprintf(S,

 “IndVar Range: Min = %G; Max = %G”,

 CurveParams.IndVarMin,

 CurveParams.IndVarMax);

 *AbbreviatedSettings = S;

 }

 else

 {

 strcpy(S, “No IndVarRange”);

 *AbbreviatedSettings = S;

 }

 TecUtilLockFinish(AddOnID);

}

At this point, it is recommended that you compile the add-on and verify that you can change the
settings via your dialog, and that settings are displayed on the Mapping Style dialog.

13 - 11 The Curve-Fit
The curve-fit is almost complete given the code created by the CreateNewAddOn script or the
Tecplot Add-on Wizard. The curve-fit computes the average of the data. We alter the curve-fit to
exclude points that fall outside the range specified in the dialog.

161

The XYDataPointsCallback()

13 - 12 The XYDataPointsCallback()
We will need to alter the XYDataPointsCallback() to determine the proper independent
variable range. This range is the range limited by the extents of the data and the values specified in
the Curve-Fit dialog. Alter the XYDataPointsCallback() as follows:

Boolean_t STDCALL XYDataPointsCallback(FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 CoordScale_e IndVCoordScale,

 CoordScale_e DepVCoordScale,

 LgIndex_t NumRawPts,

 LgIndex_t NumCurvePts,

 EntIndex_t XYMapNum,

 char *CurveSettings,

 double *IndCurveValues,

 double *DepCurveValues)

{

 Boolean_t IsOk = TRUE;

 int ii;

 double Average;

 double Delta = 0.0;

 double IndVarMin,

 IndVarMax;

 CurveParams_s CurveParams;

162

 TecUtilLockStart(AddOnID);

 /* Get the min and max values of the independent variable. */

 TecUtilDataValueGetMinMaxByRef(RawIndV,

 &IndVarMin,

 &IndVarMax);

 /* Get the curve parameters */

 GetValuesFromCurveSettings(XYMapNum,

 CurveSettings,

 &CurveParams);

 if (CurveParams.UseIndVarRange)

 {

 /*

 * Adjust the independent variable range to fall either within

 * the range of data or the range specified by the

 * CurveParams structure.

 */

 IndVarMin = MAX(IndVarMin, CurveParams.IndVarMin);

163

The XYDataPointsCallback()

 IndVarMax = MIN(IndVarMax, CurveParams.IndVarMax);

 }

 Delta = (IndVarMax-IndVarMin)/(NumCurvePts-1);

 /*

 * Find the average value of the raw dependent variable for the

 * default curve fir (straight line at average).

 */

 Average = SimpleAverage(RawDepV,

 RawIndV,

 NumRawPts,

 IndVarMin,

 IndVarMax);

 /*

 * Step through all the points along the curve and set the

 * DepCurveValues to the Average at each IntCurveValue.

 */

 for (ii = 0; ii < NumCurvePts; ii++)

164

 {

 IndCurveValues[ii] = ii*Delta + IndVarMin;

 DepCurveValues[ii] = Average;

 }

 TecUtilLockFinish(AddOnID);

 return IsOk;

}

Notice that the SimpleAverage() function has also been changed. We are now passing more
information to the SimpleAverage() function so it can make the decision about what points to
include in the average value calculation. Alter the SimpleAverage() function as follows:

/**

 * Function to compute the average of the raw dependent variable for the

 * default fit (straight line at average).

 *

 * REMOVE THIS FUNCTION FOR OTHER FITS.

 */

double SimpleAverage(FieldData_pa RawDepV,

 FieldData_pa RawIndV,

 LgIndex_t NumRawPts,

 double IndVarMin,

165

The XYDataPointsCallback()

 double IndVarMax)

{

 int ii;

 int Count = 0;

 double Sum = 0;

 for (ii = 0; ii < NumRawPts; ii++)

 {

 double IndV = TecUtilDataValueGetByRef(RawIndV, ii+1);

 /*

 * Only compute the average on values that fall in the

 * specified range of the independent variable.

 */

 if (IndV >= IndVarMin && IndV <= IndVarMax)

 {

 Sum += TecUtilDataValueGetByRef(RawDepV, ii+1);

 Count++;

 }

 }

166

 return (Sum/Count);

}

The SimpleAverage() function is also used in the CurveInfoStringCallback() so we
will have to alter that function as well. You will notice that the process in CurveInfoString-
Callback() is very similar to the process used in XYDataPointsCallback(). The Cur-
veInfoStringCallback() function looks as follows:

Boolean_t STDCALL CurveInfoStringCallback(FieldData_pa RawIndV,

 FieldData_pa RawDepV,

 CoordScale_e IndVCoordScale,

 CoordScale_e DepVCoordScale,

 LgIndex_t NumRawPts,

 EntIndex_t XYMapNum,

 char *CurveSettings,

 char **CurveInfoString)

{

 Boolean_t IsOk = TRUE;

 CurveParams_s CurveParams;

 double IndVarMin,IndVarMax;

 double Average;

 TecUtilLockStart(AddOnID);

167

The XYDataPointsCallback()

 /*

 * If this function is not registered with Tecplot, no curve

 * information will be displayed in the XY-Curve Info dialog.

 */

 *CurveInfoString = TecUtilStringAlloc(30, “CurveInfoString”);

 /* Get the curve parameters. */

 GetValuesFromCurveSettings(XYMapNum,CurveSettings,&CurveParams);

 if (CurveParams.UseIndVarRange)

 {

 /*

 * Adjust the Independent variable range to fall either within

 * the range of the data or the range specified by the

 * CurveParams structure.

 */

 IndVarMin = CurveParams.IndVarMin; /* initialize these values */

 IndVarMax = CurveParams.IndVarMax;

 IndVarMin = MAX(IndVarMin, CurveParams.IndVarMin);

 IndVarMax = MIN(IndVarMax, CurveParams.IndVarMax);

168

 }

 Average = SimpleAverage(RawDepV,

 RawIndV,

 NumRawPts,

 IndVarMin,

 IndVarMax);

 sprintf(*CurveInfoString, “Average is: %G\n”, Average);

 TecUtilLockFinish(AddOnID);

 return IsOk;

}

The add-on is now complete. You should compile the add-on at this time and verify that it works as
expected.

As a further exercise, add error-checking to
the dialog so that the minimum value is
greater than the maximum value.

The process described in this manual is the
preferred process for creating curve-fit
add-ons with configurable settings. When-
ever creating an add-on of this type, you
should refer to this example as a template.

169

INDEX

Symbols
_token variable 40

A
AbbreviatedSettingsStringCallback function 159
ADDGLBL.h 18

description 36
in SimpAvg 139

Add-On Development Root Directory 11
ADDONGLB.h 15
Add-ons

adding field data 67
Animate I Planes button 92
AnimIPlanes 85
Browse button 61
Compute function writing 24
Converter 35
create LoadTxt 58
creating 12
creating under Windows 9
curve-fit add-on design 138
curve-fit creation 160
data converters 35
data loaders 57
dialog callbacks 61
dialog creation with TGB 10
dialog field initialization 22
dialog initialization 148
dialog launch 148
dialogs 86
dynamic-link libraries 7
Equate 17
Equate dialog creation 18
exercises 28, 83, 105, 168
Hello Word 15
Help 55
implementation 7
LoadTxt dialog creation 59
MenuCallback modification 16
OK button 62
online help 55
PolyInt description 107
reference on loading 10
register in Tecplot 147
shared libraries 7
shared objects 7
SimpAvg description 137

INDEX

170

state change callbacks 103
state changes 102
state variable set up 22
SumProbe 79
Visual C++ creation 9
Windows creation 9

Advanced topics 7
Equate exercises 28

Animate I Planes add-on
creating dialogs 86

AnimatePlanes function 92, 94, 100, 101
AnimatePlanes_BTN_D1_CB function 92
Animation 85

double buffering 100
AnimIPlanes add-on

Animate I Planes button 92
desciption 85
exercises 105

B
Browse button callback

in LoadTxt 61

C
Code

examples 7, 15, 17, 35, 58, 79, 85, 107
Compiling

-debug 13
-release 13
using Runmake 13

Compiling the add-on 13
Compute

writing 24
Compute function 22, 23
Converter add-on

about 35
ConverterCallback function 36

modifying 37
CreateCurveSettingsString function 140
CreateNewAddOn 15, 17
Creating add-ons

Add-On Development Root Directory 11
creating add-ons under UNIX 11
creating new add-ons 12
setting up to build add-ons under UNIX 11

Curve-Fit dialog 161
CurveInfoStringCallback function 135, 166
CurveParams 156
CurveParams_s 141, 148

description 139

171

CurveSettings variable 124
in SimpAvg 139

CurveSettingsCallback function 148
CustomMake

editing the CustomMake file 13

D
Data converters 35
Data loaders

about 57
DataaFName

in Converter 37
-debug flag 13
DepCurveValues array 124
Developer Studio

used with TGB 10
Dialog10kButton_CB function 156
Dialog1HelpButton function 55
Dialog1Init_CB function 22, 89, 90, 155
Dialog1OkButtonCallback function 62
Dialogs

callback implementation 61
creating 18
creating with TGB 10
creation 59, 86
Curve-Fit 161
fields 22
in SimpAvg 155
Plot Attributes 147, 159
XY-Plot Curve Info 107, 135

DoConversion function 39
writing 39

DoLoadDelimitedText function 62
Double buffering

in animation 100
Dynamic-link libraries 7

E
Engine.c

description 36
in Converter 36, 46
in LoadTxt 63, 64
in PolyInt 109

engine.c
in PolyInt 111, 129, 135
in SimpAvg 140, 149, 159

ENGINE.h
in LoadTxt 63

Engine.h
in PolyInt 109

INDEX

172

in SimpAvg 141, 146
Environment variables

TECADDONDEVDIR 11
TECADDONDEVPLATFORM 11

Equate
adding help 55
creating dialogs 18
writing Compute function 24

Equate add-on 17
Exercises 28

equate.html 55
Examples

code 7, 15, 17, 35, 58, 79, 85, 107
creating Equate dialog 18
Equate add-on 17
files 7, 15, 17, 35, 58, 79, 85, 107
source code 7, 15, 17, 35, 58, 79, 85, 107

Excercises 28
Exercises

AnimIPlanes add-on 105
Equate add-on 28
extending SimpAvg add-on 168
extending SumProbe add-on 83

ExtractCurveValuesFromWorkingArray function 127

F
Field data

adding 67
FieldData_pa

in Equate 24
File*

about 40
FileName function 61
FileName text field

in LoadTxt 62
Files

examples 7, 15, 17, 35, 58, 79, 85, 107
FillZoneList function 92, 103
Functions

AbbreviatedSettingsStringCallback 159
about Get_Vars 50
AnimatePlanes 92, 94, 100, 101
AnimatePlanes_BTN_D1_CB 92
Compute 22, 23
ConverterCallback 36
CreateCurveSettingsString 140
CurveInfoStringCallback 135, 166
CurveSettingsCallback 148
Dialog10kButton_CB 156
Dialog1HelpButton 55

173

Dialog1Init_CB 22, 89, 90, 155
Dialog1OkButtonCallback 62
DoConversion 39
DoConversion writing 39
DoLoadDelimitedText 62
ExtraCurveValuesFromWorkingArray 127
FileName 61
FillZoneList 92, 103
get_token 40, 46
GetVars 40
GUI_TextFieldGetString 63
GUI_TextFieldSetString 23
InitializeCurveParams 146
InitTecAddOn 16, 36, 57, 80, 90, 109
InsertProbeValueInWorkingArray 134
LoaderCallback 64, 69
LoaderSelectedCallback 63
MenuCallback 16, 80
modifying ConverterCallback 37
MyProbeCallback 81
PolyInt 111, 119, 129
PrepareWorkingArray 124
ProbeValueCallback 128
SimpleAverage 111, 164, 166
StateChangeCallback 103
TecIO 35
TecUtil 39, 80
TecUtilCurveRegisterExtCrvFit 108, 119
TecUtilCurveSetExtendedSettings 146
TecUtilDataSetAddZone 67
TecUtilDataSetCreate 67
TecUtilDialogGetFileName 61
TecUtilDialogGetVariables 80
TecUtilHelp 55
TecUtilImportAddLoader 57
TecUtilMenuAddOption 16, 80
TecUtilProbeInstallCallback 81
TecUtilStringAlloc 141
TecUtilStringDealloc 62
TecUtilTecDat 40
TecUtilTecEnd 40
TecUtilTecIni 40
TecUtilTecZne 40
TecUtilVarIsEnabled 28
TecUtilZoneIsEnabled 28
UpdateMainDialogSensitivities 155
writing Compute 24
XYDataPointsCallback 119, 124, 127, 161

Further reading 7

INDEX

174

G
Get_token function 40, 46
Get_Vars function

about 50
GetVars function 40
Graphical User Interface 13
GUI builder 13
GUI Source Code 21
Gui.lay 18

in LoadTxt 59
GUI_TextFieldGetString function 63
GUI_TextFieldSetString function 23
Guibld.c 18

description 22
in Equate 22

Guicb.c 18
description 22
in AnimIPlanes 89, 91
in Equate 22, 23
in LoadTxt 61, 62

guicb.c
in SimpAvg 148, 149, 151, 156

Guicb.tmp
description 22
in AnimIPlanes 89

guicb.tmp
in SimpAvg 148

Guidefs.c 18
description 21
in Equate 21

GUIDEFS.h 18
description 21
in Equate 21

H
Hello World 15
Help 55

adding to Equate Add-on 55
equate.html 55
TecUtilHelp 55

I
IndCurveValues array 124
InitializeCurveParams function 146
InitializeGUICurveParams 155
InitTecAddOn function 16, 36, 57, 80, 90, 109
InsertProbeValueInWorkingArray function 134

L
Libraries

175

libtec 12
libtec 12
LoaderCallback function 64, 69
LoaderSelectedCallback function 63
Loading add-ons

further reading 10
LoadTxt

dialog creation 59
LoadTxt add-on

adding field data 67
Browse button 61
creating 58
dialog callback implementation 61
OK button 62

M
Main.c 18

about 36
in AnimIPlanes 103
in Equate 25
in SumProbe 80, 81

main.c 15
in PolyInt 108
in SimpAvg 147

MenuCallback function 16, 80
MessageString

in Converter 39
MulNum

about 22
MyProbeCallback function 81

O
OK button

in LoadTxt 62
Online Help 55
Online help

adding to Equate Add-on 55
equate.html 55
TecUtilHelp 55

P
Plot Attributes dialog 147, 159
PolyInt add-on

arrays 119
DepCurveValues array 124
description 107
IndCurveValues array 124

PolyInt function 111, 119, 129
Polynomial Integer add-on 107
PrepareWorkingArray function 124

INDEX

176

ProbeValueCallback function 128

R
Reference

loading add-ons 10
-release flag 13
Runmake 13

S
Shared libraries 7
Shared objects 7
SimpAvg add-on

configuration 138
curve-fit creation 160
Curve-Fit dialog 161
description 137
dialog initialization 148
dialog launch 148
dialog work 155
register in Tecplot 147

SimpAvgadd-on
exercises 168

SimpleAverage function 111, 164, 166
Skip parameter

in AnimIPlanes 92
Skip text field 89
Source code

examples 7, 15, 17, 35, 58, 79, 85, 107
GUI source code 21

State change callbacks
in add-ons 103

State changes
description 102
in add-ons 102
monitoring 102

State variables 22
StateChangeCallback function 103
StringList_pa

about 40
SumProbe add-on

description 79
exercises 83

T
TECADDONDEVDIR 11
TECADDONDEVPLATFORM 11
TecIO function 35
Tecplot

register add-ons 147
Tecplot GUI Builder

177

description 10
source code 21
using 9

Tecplot GUI Builder (TGB) 13
Tecplot.add 9
TecUtil function 80
TecUtil functions 39
TecUtilCurveRegisterExtCrvFit function 108, 119
TecUtilCurveSetExtendedSettings function 146
TecUtilDataSetAddZone function 67
TecUtilDataSetCreate function 67
TecUtilDialogGetFileName function 61
TecUtilDialogGetVariables function 80
TecUtilHelp function 55
TecUtilImportAddLoader function 57
TecUtilMenuAddOption function 16, 80
TecUtilProbInstallCallback function 81
TecUtilStringAlloc function 141
TecUtilStringDealloc function 62
TecUtilTecDat function 40
TecUtilTecEnd function 40
TecUtilTecIni function 40
TecUtilTecZne function 40
TecUtilVarIsEnabled function 28
TecUtilZoneIsEnabled function 28
TGB

description 10
used with Developer Studio 10

U
UpdateMainDialogSensitivities function 155

V
Variables

CurveSettings 124
XYMapNum 124

W
Windows

creating dialogs with TGB 10
how to build add-ons 9
setting up to build add-ons 9

X
XYDataPointsCallback function 119, 124, 127, 161
XYMapNum parameter 141
XYMapNum variable 124
XY-Plot Curve Info dialog 107, 135

INDEX

178

Z
ZoneList text field 89

initialization 90
ZoneSet

in AnimIPlanes 94
ZoneSet parameter

in AnimIPlanes 92

	Table of Contents
	Chapter 1 About Add-ons
	1 - 1 Introduction

	Chapter 2 Creating Add-ons under Windows
	2 - 1 Setting Up to Build Add-ons under Windows
	2 - 2 Creating an Add-on with Visual C++
	2 - 3 Dialog Creation with Tecplot GUI Builder

	Chapter 3 Creating Add-ons under UNIX
	3 - 1 Setting Up to Build Add-ons
	3 - 2 Creating a New Add-on
	3 - 3 Creating the Graphical User Interface for Your Add-on
	3 - 4 Compiling the Add-on
	3- 4.1 Using Runmake
	3- 4.2 Editing the CustomMake File

	Chapter 4 Hello World!
	4 - 1 Introduction to the Hello World Add-on
	4 - 2 Modifying the MenuCallback() Function

	Chapter 5 The Equate Add-on
	5 - 1 Introduction to the Equate Add-on
	5 - 2 Creating the Dialog
	5 - 3 GUI Source Code
	5 - 4 Setting up State Variables and Initializing the Dialog Fields
	5 - 5 Writing the Compute() Function
	5 - 6 Exercises

	Chapter 6 Extending the Equate Add- on
	6 - 1 Getting Started
	6 - 2 Editing Equate

	Chapter 7 Creating a Data Converter
	7 - 1 Converters Versus Loaders
	7- 1.1 How do Converters work in Tecplot?

	7 - 2 Introduction to the Converter Add-on
	7 - 3 Modifying the ConverterCallback() Function
	7 - 4 Writing the DoConversion() Function
	7 - 5 Parsing the Code
	7 - 6 The Get_Token() Function
	7 - 7 The GetVars() Function

	Chapter 8 Adding Help
	8 - 1 Introduction
	8 - 2 Creating Help

	Chapter 9 Creating a Data Loader
	9 - 1 Loaders Versus Converters
	9 - 2 How a Data Loader Add-on Works
	9 - 3 Creating the Data Loader
	9 - 4 Creating the Dialog
	9 - 5 Implementing Dialog Callbacks
	9- 5.1 The FileName Text Field Callback
	9- 5.2 The Browse Button Callback
	9- 5.3 The OK Button Callback

	9 - 6 Registering Callbacks
	9 - 7 Loading the Data
	9- 7.1 Using Auto Load on Demand
	9- 7.2 Using Custom Load on Demand

	9 - 8 Using Immediate Loading

	Chapter 10 Extending Interactive User Interface Capabilities
	10 - 1 Introduction to the SumProbe Add-on
	10 - 2 The MenuCallback() Function
	10 - 3 The MyProbeCallback() Function
	10 - 4 Exercises

	Chapter 11 Animating
	11 - 1 Introduction to the AnimIPlanes Add-on
	11 - 2 Creating the Dialog
	11- 2.1 Windows
	11- 2.2 UNIX

	11 - 3 Setting up State Variables/Initializing Dialog Fields
	11 - 4 The Animate I Planes button
	11 - 5 Writing the AnimatePlanes() Function
	11 - 6 Monitoring State Changes
	11 - 7 Exercises

	Chapter 12 The Polynomial Integer Add-on
	12 - 1 Introduction to the PolyInt Extended Curve-Fit
	12 - 2 Getting Started
	12 - 3 Source Files
	12- 3.1 File main.c
	12- 3.2 File ENGINE.h
	12- 3.3 engine.c

	12 - 4 The XYDataPointsCallback() Function
	12 - 5 The PrepareWorkingArray() Function
	12 - 6 The ExtractCurveValuesFromWorkingArray() Function
	12 - 7 The ProbeValueCallback() Function
	12 - 8 The InsertProbeValueInWorkingArray() Function
	12 - 9 The CurveInfoStringCallback() Function

	Chapter 13 The Simple Average Add- on
	13 - 1 Introduction to the SimpAvg Extended Curve-Fit
	13 - 2 Getting Started
	13 - 3 Designing the Add-on
	13- 3.1 What are the settings going to be?
	13- 3.2 What are the default settings?
	13- 3.3 What is the syntax for the CurveSettings string?
	13- 3.4 How to maintain the values of the settings?

	13 - 4 Handling the CurveSettings String
	13 - 5 The InitializeCurveParams() Function
	13 - 6 Registering the Add-on with Tecplot
	13 - 7 Creating the Dialog
	13 - 8 Launching and Initializing the Dialog
	13- 8.1 Initializing the Dialog

	13 - 9 Making the Dialog Operational
	13- 9.1 Updating the Sensitivities

	13 - 10 Updating the Mapping/Zone Style Dialog
	13 - 11 The Curve-Fit
	13 - 12 The XYDataPointsCallback()

	INDEX

