
A Python programming
tutorial

John W. Shipman
2009-11-17 17:17

Abstract

A tutorial for the Python programming language.

This publication is available in Web form1 and also as a PDF document2. Please forward any
comments to tcc-doc@nmt.edu.

Table of Contents
1. Introduction .. 2

1.1. Starting Python in conversational mode ... 2
2. Python's numeric types .. 3

2.1. Basic numeric operations .. 3
2.2. The assignment statement .. 5
2.3. More mathematical operations ... 7

3. Character string basics ... 9
3.1. String literals ... 10
3.2. Indexing strings ... 12
3.3. String methods .. 13
3.4. The string format operator .. 16

4. Sequence types ... 19
4.1. Functions and operators for sequences ... 20
4.2. Indexing the positions in a sequence ... 21
4.3. Slicing sequences ... 22
4.4. Sequence methods ... 24
4.5. List methods .. 24
4.6. The range() function: creating arithmetic progressions .. 25
4.7. One value can have multiple names ... 26

5. Dictionaries ... 28
5.1. Operations on dictionaries .. 28
5.2. Dictionary methods ... 30
5.3. A namespace is like a dictionary ... 32

6. Branching .. 33
6.1. Conditions and the bool type .. 33
6.2. The if statement ... 34
6.3. A word about indenting your code .. 37
6.4. The for statement: Looping ... 37
6.5. The while statement ... 39
6.6. Special branch statements: break and continue .. 39

1 http://www.nmt.edu/tcc/help/pubs/lang/pytut/
2 http://www.nmt.edu/tcc/help/pubs/lang/pytut/pytut.pdf

1A Python programming tutorialNew Mexico Tech Computer Center

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

http://www.nmt.edu/tcc/help/pubs/lang/pytut/
http://www.nmt.edu/tcc/help/pubs/lang/pytut/pytut.pdf
http://www.nmt.edu/tcc/help/pubs/lang/pytut/
http://www.nmt.edu/tcc/help/pubs/lang/pytut/pytut.pdf

7. How to write a self-executing Python script .. 40
8. def: Defining functions .. 41

8.1. return: Returning values from a function .. 42
8.2. Function argument list features ... 43
8.3. Keyword arguments ... 44
8.4. Extra positional arguments ... 45
8.5. Extra keyword arguments .. 45
8.6. Documenting function interfaces .. 46

9. Using Python modules ... 46
9.1. Importing items from modules .. 47
9.2. Import entire modules ... 48
9.3. A module is a namespace ... 50
9.4. Build your own modules .. 50

10. Input and output .. 51
10.1. Reading files .. 51
10.2. File positioning for random-access devices ... 53
10.3. Writing files ... 53

11. Introduction to object-oriented programming ... 54
11.1. A brief history of snail racing technology .. 55
11.2. Scalar variables .. 55
11.3. Snail-oriented data structures: Lists ... 56
11.4. Snail-oriented data structures: A list of tuples ... 57
11.5. Abstract data types ... 59
11.6. Abstract data types in Python .. 61
11.7. class SnailRun: A very small example class .. 61
11.8. Life cycle of an instance ... 63
11.9. Special methods: Sorting snail race data ... 65

1. Introduction
This document contains some tutorials for the Python programming language. These tutorials accompany
the free Python classes taught by the New Mexico Tech Computer Center. Another good tutorial is at
the Python website3.

1.1. Starting Python in conversational mode
This tutorial makes heavy use of Python's conversational mode. When you start Python in this way,
you will see an initial greeting message, followed by the prompt “>>>”.

• On a TCC workstation in Windows, from the Start menu, select All Programs → ActiveState ActivePy-
thon 2.5 → Python Interactive Shell. You will see something like this:

3 http://docs.python.org/tut/tut.html

New Mexico Tech Computer CenterA Python programming tutorial2

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html

• For Linux or MacOS, from a shell prompt, type:

python

You will see something like this:

-bash-3.1$ python
Python 2.4.2 (#1, Feb 12 2006, 03:59:46)
[GCC 4.1.0 20060210 (Red Hat 4.1.0-0.24)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

When you see the “>>>” prompt, you can type a Python expression, and Python will show you the
result of that expression. This makes Python useful as a desk calculator. For example:

>>> 1+1
2
>>>

Each section of this tutorial introduces a group of related Python features.

2. Python's numeric types
Pretty much all programs need to do numeric calculations. Python has several ways of representing
numbers, and an assortment of operators to operate on numbers.

2.1. Basic numeric operations
To do numeric calculations in Python, you can write expressions that look more or less like algebraic
expressions in many other common languages. The “+” operator is addition; “-” is subtraction; use “*”
to multiply; and use “/” to divide. Here are some examples:

>>> 99 + 1
100
>>> 1 - 99
-98
>>> 7 * 5
35
>>> 81 / 9
9

The examples in this document will often use a lot of extra space between the parts of the expression,
just to make things easier to read. However, these spaces are not required:

>>> 99+1
100
>>> 1-99
-98

When an expression contains more than one operation, Python defines the usual order of operations,
so that higher-precedence operations like multiplication and division are done before addition and
subtraction. In this example, even though the multiplication comes after the addition, it is done first.

3A Python programming tutorialNew Mexico Tech Computer Center

>>> 2 + 3 * 4
14

If you want to override the usual precedence of Python operators, use parentheses:

>>> (2+3)*4
20

Here's a result you may not expect:

>>> 1 / 5
0

You might expect a result of 0.2, not zero. However, Python has different kinds of numbers. Any number
without a decimal point is considered an integer, a whole number. If any of the numbers involved contain
a decimal point, the computation is done using floating point type:

>>> 1.0 / 4.0
0.25
>>> 1.0 / 5.0
0.20000000000000001

That second example above may also surprise you. Mathematically, one-fifth is exactly 0.2. However,
in Python (as in pretty much all other contemporary programming languages), many real numbers
cannot be represented exactly. The representation of 1.0/5.0 has a slight error in the seventeenth
decimal place. This behavior may be slightly annoying, but in conversational mode, Python doesn't
know how much precision you want, so you get a ridiculous amount of precision, and this shows up
the fact that some values are approximations.

You can use Python's print statement to display values without quite so much precision:

>>> print 1.0/5.0
0.2

It's okay to mix integer and floating point numbers in the same expression. Any integer values are coerced
to their floating point equivalents.

>>> print 1.0/5
0.2
>>> print 1/5.0
0.2

Later we will learn about Python's format operator, which allows you to specify exactly how much
precision to use when displaying numbers. For now, let's move on to some more of the operators on
numbers.

The “%” operator between two numbers gives you the modulo. That is, the expression “x % y” returns
the remainder when x is divided by y.

>>> 13 % 5
3
>>> 5.72 % 0.5
0.21999999999999975
>>> print 5.72 % 0.5
0.22

Exponentiation is expressed as “x ** y”, meaning x to the y power.

New Mexico Tech Computer CenterA Python programming tutorial4

>>> 2 ** 8
256
>>> 2 ** 30
1073741824
>>> 2.0 ** 0.5
1.4142135623730951
>>> 10.0 ** 5.2
158489.31924611141
>>> 2.0 ** 100
1.2676506002282294e+30

That last number, 1.2676506002282294e+30, is an example of exponential or scientific notation. This
number is read as “1.26765... times ten to the 30th power”. Similarly, a number like 1.66e-24 is read
as “1.66 times ten to the minus 24th power”.

So far we have seen examples of the integer type, which is called int in Python, and the floating-point
type, called the float type in Python. Python guarantees that int type supports values between -
2,147,483,648 and 2,147,483,647 (inclusive).

There is another type called long, that can represent much larger integer values. Python automatically
switches to this type whenever an expression has values outside the range of int values. You will see
letter “L” appear at the end of such values, but they act just like regular integers.

>>> 2 ** 50
1125899906842624L
>>> 2 ** 100
1267650600228229401496703205376L
>>> 2 ** 1000
107150860718626732094842504906000181056140481170553360744375038837035105112
493612249319837881569585812759467291755314682518714528569231404359845775746
985748039345677748242309854210746050623711418779541821530464749835819412673
987675591655439460770629145711964776865421676604298316526243868372056680693
76L

2.2.The assignment statement
So far we have worked only with numeric constants and operators. You can attach a name to a value,
and that value will stay around for the rest of your conversational Python session.

Python names must start with a letter or the underbar (_) character; the rest of the name may consist
of letters, underbars, or digits. Names are case-sensitive: the name Count is a different name than
count.

For example, suppose you wanted to answer the question, “how many days is a million seconds?” We
can start by attaching the name sec to a value of a million:

>>> sec = 1e6
>>> sec
1000000.0

A statement of this type is called an assignment statement. To compute the number of minutes in a million
seconds, we divide by 60. To convert minutes to hours, we divide by 60 again. To convert hours to days,
divide by 24, and that is the final answer.

5A Python programming tutorialNew Mexico Tech Computer Center

>>> minutes = sec / 60.0
>>> minutes
16666.666666666668
>>> hours=minutes/60
>>> hours
277.77777777777777
>>> days=hours/24.
>>> days
11.574074074074074
>>> print days, hours, minutes, sec
11.5740740741 277.777777778 16666.6666667 1000000.0

You can attach more than one name to a value. Use a series of names, separated by equal signs, like
this.

>>> total = remaining = 50
>>> print total, remaining
50 50

The general form of an assignment statement looks like this:

name1 = name2 = ... = expression

Here are the rules for evaluating an assignment statement:

• Each namei is some Python variable name. Variable names must start with either a letter or the un-
derbar (_) character, and the remaining characters must be letters, digits, or underbar characters.
Examples: skateKey; _x47; sum_of_all_fears.

• The expression is any Python expression.

• When the statement is evaluated, first the expression is evaluated so that it is a single value. For
example, if the expression is “(2+3)*4”, the resulting single value is the integer 20.

Then all the names namei are bound to that value.

What does it mean for a name to be bound to a value? When you are using Python in conversational
mode, the names and value you define are stored in an area called the global namespace. This area is like
a two-column table, with names on the left and values on the right.

Here is an example. Suppose you start with a brand new Python session, and type this line:

>>> i = 5100

Here is what the global namespace looks like after the execution of this assignment statement.

Global namespace

Name Value

int

i 5100

In this diagram, the value appearing on the right shows its type, int (integer), and the value, 5100.

New Mexico Tech Computer CenterA Python programming tutorial6

In Python, values have types, but names are not associated with any type. A name can be bound to a
value of any type at any time. So, a Python name is like a luggage tag: it identifies a value, and lets you
retrieve it later.

Here is another assignment statement, and a diagram showing how the global namespace appears after
the statement is executed.

>>> j = foo = i + 1

Name Value

int

5101

int

5100i

foo

j

The expression “i + 1” is equivalent to “5100 + 1”, since variable i is bound to the integer 5100.
This expression reduces to the integer value 5101, and then the names j and foo are both bound to that
value. You might think of this situation as being like one piece of baggage with two tags tied to it.

Let's examine the global namespace after the execution of this assignment statement:

>>> foo = foo + 1

Name Value

int

5101

int

5100i

5102

int

foo

j

Because foo starts out bound to the integer value 5101, the expression “foo + 1” simplifies to the
value 5102. Obviously, foo = foo + 1 doesn't make sense in algebra! However, it is a common way
for programmers to add one to a value.

Note that name j is still bound to its old value, 5101.

2.3. More mathematical operations
Python has a number of built-in functions. To call a function in Python, use this general form:

f(arg1, arg2, ...)

That is, use the function name, followed by an open parenthesis “(”, followed by zero or more arguments
separated by commas, followed by a closing parenthesis “)”.

For example, the round function takes one numeric argument, and returns the nearest whole number
(as a float number). Examples:

7A Python programming tutorialNew Mexico Tech Computer Center

>>> round (4.1)
4.0
>>> round(4.9)
5.0
>>> round(4.5)
5.0

The result of that last case is somewhat arbitrary, since 4.5 is equidistant from 4.0 and 5.0. However, as
in most other modern programming languages, the value chosen is the one further from zero. More
examples:

>>> round (-4.1)
-4.0
>>> round (-4.9)
-5.0
>>> round (-4.5)
-5.0

For historical reasons, trigonometric and transcendental functions are not built-in to Python. If you
want to do calculations of those kinds, you will need to tell Python that you want to use the math
package. Type this line:

>>> from math import *

Once you have done this, you will be able to use a number of mathematical functions. For example,
sqrt(x) computes the square root of x:

>>> sqrt(4.0)
2.0
>>> sqrt(81)
9.0
>>> sqrt(100000)
316.22776601683796

Importing the math module also adds two predefined variables, pi (as in π) and e, the base of natural
logarithms:

>>> print pi, e
3.14159265359 2.71828182846

Here's an example of a function that takes more than argument. The function atan2(dx , dy) returns
the arctangent of a line whose slope is dy/dx.

>>> atan2 (1.0, 0.0)
1.5707963267948966
>>> atan2(0.0, 1.0)
0.0
>>> atan2(1.0, 1.0)
0.78539816339744828
>>> print pi/4
0.785398163397

For a complete list of all the facilities in the math module, see the Python 2.2 quick reference4. Here are
some more examples; log is the natural logarithm, and log10 is the common logarithm:

4 http://infohost.nmt.edu/tcc/help/pubs/python/modules.html

New Mexico Tech Computer CenterA Python programming tutorial8

http://infohost.nmt.edu/tcc/help/pubs/python/modules.html
http://infohost.nmt.edu/tcc/help/pubs/python/modules.html

>>> log(e)
1.0
>>> log10(e)
0.43429448190325182
>>> exp (1.0)
2.7182818284590451
>>> sin (pi / 2)
1.0
>>> cos(pi/2)
6.1230317691118863e-17

Mathematically, cos(π/2) should be zero. However, like pretty much all other modern programming
languages, transcendental functions like this use approximations. 6.12×10-17 is, after all, pretty close to
zero.

Two math functions that you may find useful in certain situations:

• floor(x) returns the largest whole number that is less than or equal to x.

• ceil(x) returns the smallest whole number that is greater than or equal to x.

>>> floor(4.9)
4.0
>>> floor(4.1)
4.0
>>> floor(-4.1)
-5.0
>>> floor(-4.9)
-5.0
>>> ceil(4.9)
5.0
>>> ceil(4.1)
5.0
>>> ceil(-4.1)
-4.0
>>> ceil(-4.9)
-4.0

Note that the floor function always moves toward -∞ (minus infinity), and ceil always moves toward
+∞.

3. Character string basics
Python has extensive features for handling strings of characters. There are two types:

• A str value is a string of zero or more 8-bit characters. The common characters you see on North
American keyboards all use 8-bit characters. The official name for this character set is ASCII5, for
American Standard Code for Information Interchange.

This character set has one surprising property: all capital letters are considered less than all lowercase
letters, so the string "Z" sorts before string "a".

5 http://en.wikipedia.org/wiki/ASCII

9A Python programming tutorialNew Mexico Tech Computer Center

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII

• A unicode value is a string of zero or more 32-bit Unicode characters. The Unicode character set
covers just about every written language and almost every special character ever invented.

We'll mainly talk about working with str values, but most unicode operations are similar or
identical, except that Unicode literals are preceded with the letter u: for example, "abc" is type str,
but u"abc" is type unicode.

3.1. String literals
In Python, you can enclose string constants in either single-quote ('...') or double-quote ("...")
characters.

>>> cloneName = 'Clem'
>>> cloneName
'Clem'
>>> print cloneName
Clem
>>> fairName = "Future Fair"
>>> print fairName
Future Fair
>>> fairName
'Future Fair'

When you display a string value in conversational mode, Python will usually use single-quote characters.
Internally, the values are the same regardless of which kind of quotes you use. Note also that the print
statement shows only the content of a string, without any quotes around it.

To convert an integer (int type) value i to its string equivalent, use the function “str(i)”:

>>> str(-497)
'-497'
>>> str(000)
'0'

The inverse operation, converting a string s back into an integer, is written as “int(s)”:

>>>
>>> int("-497")
-497
>>> int("-0")
0
>>> int ("012this ain't no number")
Traceback (most recent call last):
File "<stdin>", line 1, in ?

ValueError: invalid literal for int(): 012this ain't no number

The last example above shows what happens when you try to convert a string that isn't a valid number.

To convert a string s containing a number in base B, use the form “int(s, B)”:

>>> int ('0F', 16)
15
>>> int ("10101", 2)
21

New Mexico Tech Computer CenterA Python programming tutorial10

>>> int ("0177776", 8)
65534

To obtain the 8-bit integer code contained in a one-character string s, use the function “ord(s)”. The
inverse function, to convert an integer i to the character that has code i, use “chr(i)”. The numeric
values of each character are defined by the ASCII6character set.

>>> chr(97)
'a'
>>> ord("a")
97
>>> chr(65)
'A'
>>> ord('A')
65

In addition to the printable characters with codes in the range from 32 to 127 inclusive, a Python string
can contain any of the other unprintable, special characters as well. For example, the null character,
whose official name is NUL, is the character whose code is zero. One way to write such a character is to
use this form:

'\xNN'

where NN is the character's code in hexadecimal (base 16) notation.

>>> chr(0)
'\x00'
>>> ord('\x00')
0

Another special character you may need to deal with is the newline character, whose official name is LF
(for “line feed”). Use the special escape sequence “\n” to produced this character.

>>> s = "Two-line\nstring."
>>> s
'Two-line\nstring.'
>>> print s
Two-line
string.

As you can see, when a newline character is displayed in conversational mode, it appears as “\n”, but
when you print it, the character that follows it will appear on the next line. The code for this character
is 10:

>>> ord('\n')
10
>>> chr(10)
'\n'

Python has several other of these escape sequences. The term “escape sequence” refers to a convention
where a special character, the “escape character”, changes the meaning of the characters after it. Python's
escape character is backslash (\).

6 http://en.wikipedia.org/wiki/ASCII

11A Python programming tutorialNew Mexico Tech Computer Center

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII

MeaningNameCodeInput

backspaceBS8\b

tabHT9\t

Double quote"34\"

Single quote'39\'

Backslash\92\\

There is another handy way to get a string that contains newline characters: enclose the string within
three pairs of quotes, either single or double quotes.

>>> multi = """This string
... contains three
... lines."""
>>> multi
'This string\n contains three\n lines.'
>>> print multi
This string
contains three
lines.

>>> s2 = '''
... xyz
... '''
>>> s2
'\nxyz\n'
>>> print s2

xyz

>>>

Notice that in Python's conversational mode, when you press Enter at the end of a line, and Python
knows that your line is not finished, it displays a “...” prompt instead of the usual “>>>” prompt.

3.2. Indexing strings
To extract one or more characters from a string value, you have to know how positions in a string are
numbered.

Here, for example, is a diagram showing all the positions of the string 'ijklm'.

i j k l m
0 1 2 4 5

−5 −4 −3 −2 −1

3

In the diagram above, the numbers show the positions between characters. Position 0 is the position before
the first character; position 1 is the position between the first and characters; and so on.

You may also refer to positions relative to the end of a string. Position -1 refers to the position before
the last character; -2 is the position before the next-to-last character; and so on.

To extract from a string s the character that occurs just after position n, use an expression of this form:

New Mexico Tech Computer CenterA Python programming tutorial12

s[n]

Examples:

>>> stuff = 'ijklm'
>>> stuff[0]
'i'
>>> stuff[1]
'j'
>>> stuff[4]
'm'
>>> stuff [-1]
'm'
>>> stuff [-3]
'k'
>>> stuff[5]
Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The last example shows what happens when you specify a position after all the characters in the string.

You can also extract multiple characters from a string; see Section 4.3, “Slicing sequences” (p. 22).

3.3. String methods
Many of the operations on strings are expressed as methods. A method is sort of like a function that lives
only inside values of a certain type. To call a method, use this syntax:

expr.method(arg1, arg2, ...)

where each argi is an argument to the method, just like an argument to a function.

For example, any string value has a method called center that produces a new string with the old
value centered, using extra spaces to pad the value out to a given length. The general form is:

s.center(n)

This method takes one argument n, the size of the result. Examples:

>>> k = "Ni"
>>> k.center(5)
' Ni '
>>> "<*>".center(12)
' <*> '

Note that in the first example we are asking Python to center the string "Ni" in a field of length 5.
Clearly we can't center a 2-character string in 5 characters, so Python arbitrarily adds the extra space
character before the old value.

Another useful string method left-justifies a value in a field of a given length. The general form:

s.ljust(n)

For any string expression s, this method returns a new string containing the characters from s with
enough spaces added after it to make a new string of length n.

13A Python programming tutorialNew Mexico Tech Computer Center

>>> "Ni".ljust(4)
'Ni '
>>> "Too long to fit".ljust(4)
'Too long to fit'

Note that the .ljust() method will never return a shorter string. If the length isn't enough, it just returns
the original value.

There is a similar method that right-justifies a string value:

s.rjust(n)

This method returns a string with enough spaces added before the value to make a string of length n.
As with the .ljust() method, it will never return a string shorter than the original.

>>> "Ni".rjust(4)
' Ni'
>>> m = "floccinaucinihilipilification"
>>> m.rjust(4)
'floccinaucinihilipilification'

Sometimes you want to remove whitespace (spaces, tabs, and newlines) from a string. For a string s,
use these methods to remove leading and trailing whitespace:

• s.strip() returns s with any leading or trailing whitespace characters removed.

• s.lstrip() removes only leading whitespace.

• s.rstrip() removes only trailing whitespace.

>>> spaceCase = ' \n \t Moon \t\t '
>>> spaceCase
' \n \t Moon \t\t '
>>> spaceCase.strip()
'Moon'
>>> spaceCase.lstrip()
'Moon \t\t '
>>> spaceCase.rstrip()
' \n \t Moon'

The method s.count(t) searches string s to see how many times string t occurs in it.

>>> chiq = "banana"
>>> chiq
'banana'
>>> chiq.count("a")
3
>>> chiq.count("b")
1
>>> chiq.count("x")
0
>>> chiq.count("an")
2
>>> chiq.count("ana")
1

New Mexico Tech Computer CenterA Python programming tutorial14

Note that this method does not count overlapping occurrences. Although the string "ana" occurs twice
in string "banana", the occurrences overlap, so "banana".count("ana") returns only 1.

Use this method to search for a string t within a string s:

s.find(t)

If t matches any part of s, the method returns the position where the first match begins; otherwise, it
returns -1.

>>> chiq
'banana'
>>> chiq.find ("b")
0
>>> chiq.find ("a")
1
>>> chiq.find ("x")
-1
>>> chiq.find ("nan")
2

If you need to find the last occurrence of a substring, use the similar method s.rfind(t), which returns
the position where the last match starts, or -1 if there is no match.

>>> chiq.rfind("a")
5
>>> chiq[5]
'a'
>>> chiq.rfind("n")
4
>>> chiq.rfind("b")
0
>>> chiq.rfind("Waldo")
-1

You can check to see if a string s starts with a string t using a method call like this:

s.startswith(t)

This method returns True if s starts with a string that matches t; otherwise it returns False.

>>> chiq
'banana'
>>> chiq.startswith("b")
True
>>> chiq.startswith("ban")
True
>>> chiq.startswith ('Waldo')
False

There is a similar method s.endswith(t) that tests whether string s ends with t:

>>> chiq.endswith("Waldo")
False
>>> chiq.endswith("a")
True

15A Python programming tutorialNew Mexico Tech Computer Center

>>> chiq.endswith("nana")
True

The special values True and False are discussed later in Section 6.1, “Conditions and the bool
type” (p. 33).

The methods s.lower() and s.upper() are used to convert uppercase characters to lowercase, and
vice versa, respectively.

>>> poet = 'E. E. Cummings'
>>> poet.upper()
'E. E. CUMMINGS'
>>> poet.lower()
'e. e. cummings'

There are string methods for testing what kinds of characters are in a string. Each of these methods is
a predicate, that is, it asks a question and returns a value of True or False.

• s.isalpha() tests whether all the characters of s are letters.
• s.isupper() tests whether all the letters of s are uppercase. (It ignores any non-letter characters.)
• s.islower() tests whether all the letters of s are lowercase letters. (This method also ignores non-

letter characters.)
• s.isdigit() tests whether all the characters of s are digits.

>>> mixed = 'abcDEFghi'
>>> mixed.isalpha()
True
>>> mixed.isupper()
False
>>> mixed.islower()
False
>>> "ABCDGOLDFISH".isupper()
True
>>> "lmno goldfish".islower()
True
>>> "abc $%&*(".islower()
True
>>> "abC $%&*(".islower()
False
>>> paradise = "87801"
>>> paradise.isalpha()
False
>>> paradise.isdigit()
True
>>> "abc123".isdigit()
False

3.4.The string format operator
One of the commonest string operations is Python's format operator. Here, we want to substitute variable
values into a fixed string.

New Mexico Tech Computer CenterA Python programming tutorial16

For example, suppose your program wants to report how many bananas you have, and you have an
int variable named nBananas that contains the actual banana count, and you want to print a string
something like “We have 27 bananas” if nBananas has the value 27. This is how you do it:

>>> nBananas = 27
>>> "We have %d bananas." % nBananas
'We have 27 bananas.'

In general, when a string value appears on the left side of the “%” operator, that string is called the format
string. Within a format string, the percent character “%” has special meaning. In the example above, the
“%d” part means that an integer value will be substituted into the format string at that position. So the
result of the format operator will be a string containing all the characters from the format string, except
that the value on the right of the operator (27) will replace the “%d” in the format string.

Here's another example, showing the substitution of a string value.

>>> noSuch = "kiwis"
>>> 'We are out of %s today.' % noSuch
'We are out of kiwis today.'

This demonstrates the “%s” format code, which means that a string value is to be substituted at that
position in the result.

You can substitute more than one value in a format operation, but you must enclose the values to be
substituted in parentheses, separated by commas. For example:

>>> caseCount = 42
>>> caseContents = "peaches"
>>> print "We have %d cases of %s today." % (caseCount, caseContents)
We have 42 cases of peaches today.

So, in general, a format operator has this form:

format % (value1, value2, ...)

Wherever a format code starting with “%” appears in the format string, the corresponding valuei is
substituted for that format code.

The various format codes have a number of additional features that let you control how the values are
displayed. For example, the “%s” format code always produces a value exactly as long as the string
value you provide. But you may wish to produce a value of a fixed size. To do this, use a format code
of the form “%Ns”, where N is the number of characters you want the result to occupy. Examples:

>>> '%s' % 'soup'
'soup'
>>> '%6s' % 'soup'
' soup'

If a string shorter than N characters is formatted using format code “%Ns”, spaces are added before the
string to fill the result out to N characters. If you would prefer that the extra spaces be added after the
string value, use a format code of the form “%-Ns”.

>>> '%-6s' % 'soup'
'soup '

17A Python programming tutorialNew Mexico Tech Computer Center

By default, the integer format code “%d” always produces a string that is just large enough to hold the
number. But if you want the number to occupy exactly N digits, you can use a format code of the form
“%Nd”. Examples:

>>> "%d" % 1107
'1107'
>>> "%5d" % 1107
' 1107'
>>> '%30d' % 1107
' 1107'
>>> '%2d' % 1107
'1107'

Notice in the last example that when you specify a field size that is too small for the number, Python
will not truncate the number; it will take as many characters as needed to properly render the value.

When your number does not fill the field, the default is to add spaces to the left of the number as needed.
If you would prefer that the extra spaces be added after the number, use a format code of the form
“%-Nd”.

>>> '%5d' % 505
' 505'
>>> '%-5d' % 505
'505 '

You can ask Python to use zeroes instead of spaces to fill extra positions by using a format code of the
form “%0Nd”.

>>> '%5d' % 42
' 42'
>>> '%05d'%42
'00042'

Next we'll examine Python's format code for float values. In its simplest form, it is just “%f”.

>>> "%f" % 0.0
'0.000000'
>>> "%f" % 1.5
'1.500000'
>>> pi = 3.141592653589793
>>> "%f" % pi
'3.141593'

By default, the result will show six digits of precision after the decimal point. To specify P digits of
precision, use a format code of the form “%.Pf”.

>>> "%.0f" % pi
'3'
>>> "%.15f" % pi
'3.141592653589793'

You can also specify the total number of characters to be used in formatting a number. A format code
of the form “%N.Pf” will try to fit the result into N characters, with P digits after the decimal point.

>>> "%10f" % pi
' 3.141593'

New Mexico Tech Computer CenterA Python programming tutorial18

>>> "%5.1f" % pi
' 3.1'
>>> "%5.3f" % pi
'3.142'
>>> "%50.40f" % 5.33333
' 5.3333300000000001261923898709937930107117'

Notice in the last example above that it is possible for you to produce any number of spurious digits
beyond the precision used to specify the number originally! Beware, because those extra digits are utter
garbage.

When you specify a precision, the value is rounded to the nearest value with that precision.

>>> "%.1f" % 0.999
'1.0'
>>> "%.1f" % 0.99
'1.0'
>>> "%.1f" % 0.9
'0.9'
>>> "%.1f" % 0.96
'1.0'
>>> "%.1f" % 0.9501
'1.0'
>>> "%.1f" % 0.9499999
'0.9'
>>>

As with the %s and %d formats, you can use a negative field size in the %f format code to cause the
value to be left-aligned in the field.

>>> "%10.2f" % pi
' 3.14'
>>> "%-10.2f" % pi
'3.14 '

If you would prefer to display a float value using the exponential format, use a format code of the
form “%N.Pe”. The exponent will always occupy four or five digits depending on the size of the exponent.

>>> avo = 6.022e23
>>> "%e" % avo
'6.022000e+23'
>>> "%.3e" % avo
'6.022e+23'
>>> "%11.4e" % avo
' 6.0220e+23'
>>> googol = 1e100
>>> "%e" % googol
'1.000000e+100'
>>> "%e" % pi
'3.141593e+00'

4. Sequence types
Mathematically, a sequence in Python represents an ordered set.

19A Python programming tutorialNew Mexico Tech Computer Center

Sequences are an example of container classes: values that contain other values inside them.

Mutability: You can't change part of an immutable value. For example, you can't change the first character
of a string from 'a' to 'b'. It is, however, easy to build a new string out of pieces of other strings.

Mutable?ExamplesContainsType name
No"abc" 'abc' "" '' '\n' '\x00'8-bit charactersstr

Nou'abc' u'\u000c'32-bit charactersunicode

Yes[23, "Ruth", 69.8] []Any valueslist

No(23, "Ruth", 69.8) () (44,)Any valuestuple

• str and unicode are used to hold text, that is, strings of characters.

• list and tuple are used for sequences of zero or more values of any type. Use a list if the contents
of the sequence may change; use a tuple if the contents will not change, and in certain places where
tuples are required. For example, the right-hand argument of the string format operator (see Section 3.4,
“The string format operator” (p. 16)) must be a tuple if you are formatting more than one value.

• To create a list, use an expression of the form

[expr1, expr1, ...]

with a list of zero or more values between square brackets, “[…]”.

• To create a tuple, use an expression of the form

(expr1, expr1, ...)

with a list of zero or more values enclosed in parentheses, “(…”).

To create a tuple with only one element v, use the special syntax “(v,)”. For example, (43+1,) is
a one-element tuple containing the integer 44. The trailing comma is used to distinguish this case
from the expression “(43+1)”, which yields the integer 44, not a tuple.

Here are some calculator-mode examples. First, we'll create a string named s, a list named L, and a
tuple named t:

>>> s = "abcde"
>>> L = [0, 1, 2, 3, 4, 5]
>>> t = ('x', 'y')
>>> s
'abcde'
>>> L
[0, 1, 2, 3, 4, 5]
>>> t
('x', 'y')

4.1. Functions and operators for sequences
The built-in function len(S) returns the number of elements in a sequence S.

>>> print len(s), len(L), len(t)
5 6 2

New Mexico Tech Computer CenterA Python programming tutorial20

Function max(S) returns the largest value in a sequence S, and function min(S) returns the smallest
value in a sequence S.

>>> max(L)
5
>>> min(L)
0
>>> max(s)
'e'
>>> min(s)
'a'

To test for set membership, use the “in” operator. For a value v and a sequence S, the expression v in
S returns the Boolean value True if there is at least one element of S that equals v; it returns False
otherwise.

>>> 2 in L
True
>>> 77 in L
False

There is an inverse operator, v not in S, that returns True if v does not equal any element of S,
False otherwise.

>>> 2 not in L
False
>>> 77 not in L
True

The “+” operator is used to concatenate two sequences of the same type.

>>> s + "xyz"
'abcdexyz'
>>> L + L
[0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5]
>>> t + ('z',)
('x', 'y', 'z')

When the “*” operator occurs between a sequence S and an integer n, you get a new sequence containing
n repetitions of the elements of S.

>>> "x" * 5
'xxxxx'
>>> "spam" * 8
'spamspamspamspamspamspamspamspam'
>>> [0, 1] * 3
[0, 1, 0, 1, 0, 1]

4.2. Indexing the positions in a sequence
Positions in a sequence refer to locations between the values. Positions are numbered from left to right
starting at 0. You can also refer to positions in a sequence using negative numbers to count from right
to left: position -1 is the position before the last element, position -2 is the position before the next-to-
last element, and so on.

21A Python programming tutorialNew Mexico Tech Computer Center

Here are all the positions of the string "ijklm".

i j k l m
0 1 2 4 5

−5 −4 −3 −2 −1

3

To extract a single element from a sequence, use an expression of the form S[i], where S is a sequence,
and i is an integer value that selects the element just after that position.

>>> s[0]
'a'
>>> s[4]
'e'
>>> s[5]
Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The last line is an error; there is nothing after position 5 in string s.

>>> L[0]
0
>>> t[0]
'x'

4.3. Slicing sequences
For a sequence S, and two positions B and E within that sequence, the expression S [B : E] produces
a new sequence containing the elements of S between those two positions.

>>> L
[0, 1, 2, 3, 4, 5]
>>> L[2]
2
>>> L[4]
4
>>> L[2:4]
[2, 3]
>>> s = 'abcde'
>>> s[2]
'c'
>>> s[4]
'e'
>>> s[2:4]
'cd'

Note in the example above that the elements are selected from position 2 to position 4, which does not
include the element L[4].

You may omit the starting position to slice elements from at the beginning of the sequence up to the
specified position. You may omit the ending position to specify a slice that extends to the end of the
sequence. You may even omit both in order to get a copy of the whole sequence.

New Mexico Tech Computer CenterA Python programming tutorial22

>>> L[:4]
[0, 1, 2, 3]
>>> L[4:]
[4, 5]
>>> L[:]
[0, 1, 2, 3, 4, 5]

You can replace part of a list by using a slicing expression on the left-hand side of the “=” in an assignment
statement, and providing a list of replacement elements on the right-hand side of the “=”. The elements
selected by the slice are deleted and replaced by the elements from the right-hand side.

In slice assignment, it is not necessary that the number of replacement elements is the same as the
number of replaced elements. In this example, the second and third elements of L are replaced by the
five elements from the list on the right-hand side.

>>> L
[0, 1, 2, 3, 4, 5]
>>> L[2:4]
[2, 3]
>>> L[2:4] = [93, 94, 95, 96, 97]
>>> L
[0, 1, 93, 94, 95, 96, 97, 4, 5]

You can even delete a slice from a sequence by assigning an an empty sequence to a slice.

>>> L
[0, 1, 93, 94, 95, 96, 97, 4, 5]
>>> L[3]
94
>>> L[7]
4
>>> L[3:7] = []
>>> L
[0, 1, 93, 4, 5]

Similarly, you can insert elements into a sequence by using an empty slice on the left-hand side.

>>> L
[0, 1, 93, 4, 5]
>>> L[2]
93
>>> L[2:2] = [41, 43, 47, 53]
>>> L
[0, 1, 41, 43, 47, 53, 93, 4, 5]

Another way to delete elements from a sequence is to use Python's del statement.

>>> L
[0, 1, 41, 43, 47, 53, 93, 4, 5]
>>> L[3:6]
[43, 47, 53]
>>> del L[3:6]
>>> L
[0, 1, 41, 93, 4, 5]

23A Python programming tutorialNew Mexico Tech Computer Center

4.4. Sequence methods
To find the position of a value V in a sequence S, use this method:

S.index(V)

This method returns the position of the first element of S that equals V. If no elements of S are equal,
Python raises a ValueError exception.

>>> menu1
['beans', 'kale', 'tofu', 'trifle', 'sardines']
>>> menu1.index("kale")
1
>>> menu1.index("spam")
Traceback (most recent call last):
File "<stdin>", line 1, in ?

ValueError: list.index(x): x not in list

The method S.count(V) method returns the number of elements of S that are equal to V.

>>> menu1[2:2] = ['spam'] * 3
>>> menu1
['beans', 'kale', 'spam', 'spam', 'spam', 'tofu', 'trifle', 'sardines']
>>> menu1.count('gravy')
0
>>> menu1.count('spam')
3
>>> "abracadabra".count("a")
5
>>> "abracadabra".count("ab")
2
>>> (1, 6, 55, 6, 55, 55, 8).count(55)
3

4.5. List methods
All list instances have methods for changing the values in the list. These methods work only on lists.
They do not work on the other sequence types that are not mutable, that is, the values they contain may
not be changed, added, or deleted.

For example, for any list instance L, the .append(v) method appends a new value v to that list.

>>> menu1 = ['kale', 'tofu']
>>> menu1
['kale', 'tofu']
>>> menu1.append ('sardines')
>>> menu1
['kale', 'tofu', 'sardines']
>>>

To insert a single new value V into a list L at an arbitrary position P, use this method:

L.insert(P, V)

To continue the example above:

New Mexico Tech Computer CenterA Python programming tutorial24

>>> menu1
['kale', 'tofu', 'sardines']
>>> menu1.insert(0, 'beans')
>>> menu1
['beans', 'kale', 'tofu', 'sardines']
>>> menu1[3]
'sardines'
>>> menu1.insert(3, 'trifle')
>>> menu1
['beans', 'kale', 'tofu', 'trifle', 'sardines']

The method L.remove(V) removes the first element of L that equals V, if there is one. If no elements
equal V, the method raises a ValueError exception.

>>> menu1
['beans', 'kale', 'spam', 'spam', 'spam', 'tofu', 'trifle', 'sardines']
>>> menu1.remove('spam')
>>> menu1
['beans', 'kale', 'spam', 'spam', 'tofu', 'trifle', 'sardines']
>>> menu1.remove('spam')
>>> menu1
['beans', 'kale', 'spam', 'tofu', 'trifle', 'sardines']
>>> menu1.remove('gravy')
Traceback (most recent call last):
File "<stdin>", line 1, in ?

ValueError: list.remove(x): x not in list

The L.sort() method sorts the elements of a list into ascending order.

>>> menu1
['beans', 'kale', 'spam', 'tofu', 'trifle', 'sardines']
>>> menu1.sort()
>>> menu1
['tofu', 'beans', 'kale', 'sardines', 'spam', 'trifle']

Note that the .sort() method itself does not return a value; it sorts the values of the list in place. A
similar method is .reverse(), which reverses the elements in place:

>>> menu1
['tofu', 'beans', 'kale', 'sardines', 'spam', 'trifle']
>>> menu1.reverse()
>>> menu1
['trifle', 'spam', 'sardines', 'kale', 'beans', 'tofu']

4.6.The range() function: creating arithmetic progressions
The term arithmetic progression refers to a sequence of numbers such that the difference between any
two successive elements is the same. Examples: [1, 2, 3, 4, 5]; [10, 20, 30, 40]; [88, 77, 66, 55, 44, 33].

Python's built-in range() function returns a list containing an arithmetic progression. There are three
different ways to call this function.

To generate the sequence [0, 1, 2, ..., n-1], use the form range(n).

25A Python programming tutorialNew Mexico Tech Computer Center

>>> range(6)
[0, 1, 2, 3, 4, 5]
>>> range(2)
[0, 1]
>>> range(0)
[]

Note that the sequence will never include the value of the argument n; it stops one value short.

To generate a sequence [i, i+1, i+2, ..., n-1], use the form range(i, n):

>>> range(5,11)
[5, 6, 7, 8, 9, 10]
>>> range(1,5)
[1, 2, 3, 4]

To generate an arithmetic progression with a difference d between successive values, use the three-ar-
gument form range(i, n, d). The resulting sequence will be [i, i+d, i+2*d, ...], and will stop before
it reaches a value equal to n.

>>> range (10, 100, 10)
[10, 20, 30, 40, 50, 60, 70, 80, 90]
>>> range (100, 0, -10)
[100, 90, 80, 70, 60, 50, 40, 30, 20, 10]
>>> range (8, -1, -1)
[8, 7, 6, 5, 4, 3, 2, 1, 0]

4.7. One value can have multiple names
It is necessary to be careful when modifying mutable values such as lists because there may be more
than one name bound to that value. Here is a demonstration.

We start by creating a list of two strings and binding two names to that list.

>>> menu1 = menu2 = ['kale', 'tofu']
>>> menu1
['kale', 'tofu']
>>> menu2
['kale', 'tofu']

Then we make a new list using a slice that selects all the elements of menu1:

>>> menu3 = menu1 [:]
>>> menu3
['kale', 'tofu']

Now watch what happens when we modify menu1's list:

>>> menu1.append ('sardines')
>>> menu1
['kale', 'tofu', 'sardines']
>>> menu2

New Mexico Tech Computer CenterA Python programming tutorial26

['kale', 'tofu', 'sardines']
>>> menu3
['kale', 'tofu']

If we appended a third string to menu1, why does that string also appear in list menu2? The answer
lies in the definition of Python's assignment statement:

To evaluate an assignment statement of the form

V1 = V2 = ... = expr

where each Vi is a variable, and expr is some expression, first reduce expr to a single
value, then bind each of the names vi to that value.

So let's follow the example one line at a time, and see what the global namespace looks like after each
step. First we create a list instance and bind two names to it:

>>> menu1=menu2=['kale', 'tofu']

menu1

Name

list

[’kale’, ’tofu’]

Value

Global namespace

menu2

Two different names, menu1 and menu2, point to the same list. Next, we create an element-by-element
copy of that list and bind the name menu3 to the copy.

>>> menu3 = menu1[:]
>>> menu3
['kale', 'tofu']

menu3

menu2

menu1

Global namespace

Name Value

list

[’kale’, ’tofu’]

list

[’kale’, ’tofu’]

So, when we add a third string to menu1's list, the name menu2 is still bound to that same list.

>>> menu1.append ('sardines')
>>> menu1
['kale', 'tofu', 'sardines']

27A Python programming tutorialNew Mexico Tech Computer Center

>>> menu2
['kale', 'tofu', 'sardines']

menu3

menu2

menu1

Global namespace

Name Value

list

list

[’kale’, ’tofu’]

[’kale’, ’tofu’, ’sardines’]

This behavior is seldom a problem in practice, but it is important to keep in mind that two or more
names can be bound to the same value.

If you are concerned about modifying a list when other names may be bound to the same list, you can
always make a copy using the slicing expression “L[:]”.

>>> L1 = ['bat', 'cat']
>>> L2 = L1
>>> L3 = L1[:]
>>> L1.append('hat')
>>> L2
['bat', 'cat', 'hat']
>>> L3
['bat', 'cat']

5. Dictionaries
Python's dictionary type is useful for many applications involving table lookups. In mathematical terms:

A Python dictionary is a set of zero or more ordered pairs (key, value) such that:

• The value can be any type.

• Each key may occur only once in the dictionary.

• No key may be mutable. In particular, a key may not be a list or dictionary, or a tuple
containing a list or dictionary, and so on.

The idea is that you store values in a dictionary associated with some key, so that later you can use that
key to retrieve the associated value.

5.1. Operations on dictionaries
The general form used to create a new dictionary in Python looks like this:

{k1: v1, k2: v2, ...}

New Mexico Tech Computer CenterA Python programming tutorial28

To retrieve the value associated with key k from dictionary d, use an expression of this form:

d[k]

Here are some conversational examples:

>>> numberNames = {0:'zero', 1:'one', 10:'ten', 5:'five'}
>>> numberNames[10]
'ten'
>>> numberNames[0]
'zero'
>>> numberNames[999]
Traceback (most recent call last):
File "<stdin>", line 1, in ?

KeyError: 999

Note that when you try to retrieve the value for which no key exists in the dictionary, Python raises a
KeyError exception.

To add or replace the value for a key k in dictionary d, use an assignment statement of this form:

d[k] = v

For example:

>>> numberNames[2] = "two"
>>> numberNames[2]
'two'
>>> numberNames
{0: 'zero', 1: 'one', 10: 'ten', 2: 'two', 5: 'five'}

Note
The ordering of the pairs within a dictionary is undefined. Note that in the example above, the pairs do
not appear in the order they were added.

You can use strings, as well as many other values, as keys:

>>> nameNo={"one":1, "two":2, "forty-leven":4011}
>>> nameNo["forty-leven"]
4011

You can test to see whether a key k exists in a dictionary d with the “in” operator, like this:

k in d

This operation returns True if k is a key in dictionary d, False otherwise.

The construct “k not in d” is the inverse test: it returns True if k is not a key in d, False if it is a
key.

>>> 1 in numberNames
True
>>> 99 in numberNames
False
>>> "forty-leven" in nameNo

29A Python programming tutorialNew Mexico Tech Computer Center

True
>>> "eleventeen" in nameNo
False
>>> "forty-leven" not in nameNo
False
>>> "eleventeen" not in nameNo
True

Python's del (delete) statement can be used to remove a key-value pair from a dictionary.

>>> numberNames
{0: 'zero', 1: 'one', 10: 'ten', 2: 'two', 5: 'five'}
>>> del numberNames[10]
>>> numberNames
{0: 'zero', 1: 'one', 2: 'two', 5: 'five'}
>>> numberNames[10]
Traceback (most recent call last):
File "<stdin>", line 1, in ?

KeyError: 10

5.2. Dictionary methods
A number of useful methods are defined on any Python dictionary. To test whether a key k exists in a
dictionary d, use this method:

d.has_key(k)

This is the equivalent of the expression “k in d”: it returns True if the key is in the dictionary, False
otherwise.

>>> numberNames
{0: 'zero', 1: 'one', 2: 'two', 5: 'five'}
>>> numberNames.has_key(2)
True
>>> numberNames.has_key(10)
False

To get a list of all the keys in a dictionary d, use this expression:

d.keys()

To get a list of the values in a dictionary d , use this expression:

d.values()

You can get all the keys and all the values at the same time with this expression, which returns a list of
2-element tuples, in which each tuple has one key and one value as (k, v).

d.items()

Examples:

>>> numberNames
{0: 'zero', 1: 'one', 2: 'two', 5: 'five'}
>>> numberNames.keys()

New Mexico Tech Computer CenterA Python programming tutorial30

[0, 1, 2, 5]
>>> numberNames.values()
['zero', 'one', 'two', 'five']
>>> numberNames.items()
[(0, 'zero'), (1, 'one'), (2, 'two'), (5, 'five')]
>>> nameNo
{'forty-leven': 4011, 'two': 2, 'one': 1}
>>> nameNo.keys()
['forty-leven', 'two', 'one']
>>> nameNo.values()
[4011, 2, 1]
>>> nameNo.items()
[('forty-leven', 4011), ('two', 2), ('one', 1)]

Here is another useful method:

d.get(k)

If k is a key in d, this method returns d[k]. However, if k is not a key, the method returns the special
value None. The advantage of this method is that if the k is not a key in d, it is not considered an error.

>>> nameNo.get("two")
2
>>> nameNo.get("eleventeen")
>>> huh = nameNo.get("eleventeen")
>>> print huh
None

Note that when you are in conversational mode, and you type an expression that results in the value
None, nothing is printed. However, the print statement will display the special value None visually
as the example above shows.

There is another way to call the .get() method, with two arguments:

d.get(k, default)

In this form, if key k exists, the corresponding value is returned. However, if k is not a key in d, it returns
the default value.

>>> nameNo.get("two", "I have no idea.")
2
>>> nameNo.get("eleventeen", "I have no idea.")
'I have no idea.'

Here is another useful dictionary method. This is similar to the two-argument form of the .get()
method, but it goes even further: if the key is not found, it stores a default value in the dictionary.

d.setdefault(k, default)

If key k exists in dictionary d, this expression returns the value d[k]. If k is not a key, it creates a new
dictionary entry as if you had said “d[k] = default”.

>>> nameNo.setdefault("two", "Unknown")
2
>>> nameNo["two"]
2

31A Python programming tutorialNew Mexico Tech Computer Center

>>> nameNo.setdefault("three", "Unknown")
'Unknown'
>>> nameNo["three"]
'Unknown'

To merge two dictionaries d1 and d2, use this method:

d1.update(d2)

This method adds all the key-value pairs from d2 to d1. For any keys that exist in both dictionaries, the
value after this operation will be the value from d2.

>>> colors = { 1: "red", 2: "green", 3: "blue" }
>>> moreColors = { 3: "puce", 4: "taupe", 5: "puce" }
>>> colors.update (moreColors)
>>> colors
{1: 'red', 2: 'green', 3: 'puce', 4: 'taupe', 5: 'puce'}

Note in the example above that key 3 was in both dictionaries, but after the .update() method call,
key 3 is related to the value from moreColors.

5.3. A namespace is like a dictionary
Back in Section 2.2, “The assignment statement” (p. 5), we first encountered the idea of a namespace.
When you start up Python in conversational mode, the variables and functions you define live in the
“global namespace”.

We will see later on that Python has a number of different namespaces in addition to the global
namespace. Keep in mind that namespaces are very similar to dictionaries:

• The names are like the keys of a dictionary: each one is unique.
• The values bound to those names are like the values in a dictionary. They can be any value of any

type.

We can even use the same picture for a dictionary that we use to illustrate a namespace. Here is a small
dictionary and a picture of it:

d = { 'name': 'Ben Jones', 'front9': 33, 'back9': 31 }

Value

str

"Ben Jones"

int

33

int

31

name

front9

Name

back9

New Mexico Tech Computer CenterA Python programming tutorial32

6. Branching
By default, statements in Python are executed sequentially. Branching statements are used to break this
sequential pattern.

• Sometimes you want to perform certain operations only in some cases. This is called a conditional
branch.

• Sometimes you need to perform some operations repeatedly. This is called looping.

Before we look at how Python does conditional branching, we need to look at Python's Boolean type.

6.1. Conditions and the bool type
Boolean algebra is the mathematics of true/false decisions. Python's bool type has only two values:
True and False.

A typical use of Boolean algebra is in comparing two values. In Python, the expression x < y is True
if x is less than y, False otherwise.

>>> 2 < 5
True
>>> 2 < 2
False
>>> 2 < 0
False

Here are the six comparison operators:

MeaningPythonMath symbol
Less than<<

Less than or equal to<=≤

Greater than>>

Greater than or equal to>=≥

Equal to==≡
Not equal to!=≠

The operator that compares for equality is “==”. (The “=” symbol is not an operator: it is used only in
the assignment statement.)

Here are some more examples:

>>> 2 <= 5
True
>>> 2 <= 2
True
>>> 2 <= 0
False
>>> 4.9 > 5
False
>>> 4.9 > 4.8
True
>>> (2-1)==1

33A Python programming tutorialNew Mexico Tech Computer Center

True
>>> 4*3 != 12
False

Python has a function cmp(x, y) that compares two values and returns:

• Zero, if x and y are equal.
• A negative number if x < y.
• A positive number if x > y.

>>> cmp(2,5)
-1
>>> cmp(2,2)
0
>>> cmp(2,0)
1

The function bool(x) converts any value x to a Boolean value. The values in this list are considered
False; any other value is considered True:

• Any numeric zero: 0, 0L, or 0.0.
• Any empty sequence: "" (an empty string), [] (an empty list), () (an empty tuple).
• {} (an empty dictionary).
• The special unique value None.

>>> print bool(0), bool(0L), bool(0.0), bool(''), bool([]), bool(())
False False False False False False
>>> print bool({}), bool(None)
False False
>>> print bool(1), bool(98.6), bool('Ni!'), bool([43, "hike"])
True True True True

6.2.The if statement
The purpose of an if statement is to perform certain actions only in certain cases.

Here is the general form of a simple “one-branch” if statement. In this case, if some condition C is true,
we want to execute some sequence of statements, but if C is not true, we don't want to execute those
statements.

if C:
statement1
statement2
...

Here is a picture showing the flow of control through a simple if statement. Old-timers will recognize
this as a flowchart.

New Mexico Tech Computer CenterA Python programming tutorial34

C?
True

statement1

2

...

False

statement

There can be any number of statements after the if, but they must all be indented, and all indented the
same amount. This group of statements is called a block.

When the if statement is executed, the condition C is evaluated, and converted to a bool value (if it
isn't already Boolean). If that value is True, the block is executed; if the value is False, the block is
skipped.

Here's an example:

>>> half = 0.5
>>> if half > 0:
... print "Half is better than none."
... print "Burma!"
...
Half is better than none.
Burma!

Sometimes you want to do some action A when C is true, but perform some different action B when C
is false. The general form of this construct is:

if C:
block A
...

else:
block B
...

C?
False

True

A B

As with the single-branch if, the condition C is evaluated and converted to Boolean. If the result is
True, block A is executed; if False, block B is executed instead.

35A Python programming tutorialNew Mexico Tech Computer Center

>>> half = 0.5
>>> if half > 0:
... print "Half is more than none."
... else:
... print "Half is not much."
... print "Ni!"
...
Half is more than none.

Some people prefer a more “horizontal” style of coding, where more items are put on the same line, so
as to take up less vertical space. If you prefer, you can put one or more statements on the same line as
the if or else, instead of placing them in an indented block. Use a semicolon “;” to separate multiple
statements. For example, the above example could be expressed on only two lines:

>>> if half > 0: print "Half is more than none."
... else: print "Half is not much."; print "Ni!"
...
Half is more than none.

Sometimes you want to execute only one out of three or four or more blocks, depending on several
conditions. For this situation, Python allows you to have any number of “elif clauses” after an if,
and before the else clause if there is one. Here is the most general form of a Python if statement:

if C1:
block1

elif C2:
block2

elif C3:
block3

...
else:

blockF
...

1
?C

block
1

False

True

True

True

2
?C

3
?C

False

False

block
2

block
3

...

block
F

...

New Mexico Tech Computer CenterA Python programming tutorial36

So, in general, an if statement can have zero or more elif clauses, optionally followed by an else
clause. Example:

>>> i = 2
>>> if i==1: print "One"
... elif i==2: print "Two"
... elif i==3: print "Three"
... else: print "Many"
...
Two

You can have blocks within blocks. Here is an example:

>>> x = 3
>>> if x >= 0:
... if (x%2) == 0:
... print "x is even"
... else:
... print "x is odd"
... else:
... print "x is negative"
...
x is odd

6.3. A word about indenting your code
One of the most striking innovations of Python is the use of indentation to show the structure of the
blocks of code, as in the if statement. Not everyone is thrilled by this feature. However, it is generally
good practice to indent subsidiary clauses; it makes the code more readable. Those who argue that they
should be allowed to violate this indenting practice are, in the author's opinion, arguing against what
is generally regarded as a good practice.

The amount by which you indent each level is a matter of personal preference. You can use a tab char-
acter for each level of indention; tab stops are assumed to be every 8th character. Beware mixing tabs
with spaces, however; the resulting errors can be difficult to diagnose.

6.4.The for statement: Looping
Use Python's “for” construct to do some repetitive operation for each member of a sequence. Here is
the general form:

for variable in sequence:
block
...

37A Python programming tutorialNew Mexico Tech Computer Center

...

block

block

variable = sequence [−1]

variable = sequence [1]

block

variable = sequence [0]

• The sequence can be any expression that evaluates to a sequence value, such as a list or tuple. The
range() function is often used here to generate a sequence of integers.

• For each value in the sequence in turn, the variable is set to that value, and the block is executed.

As with the if statement, the block consists of one or more statements, indented the same amount
relative to the if keyword.

This example prints the cubes of all numbers from 1 through 5.

>>> for n in range(1,6):
... print "The cube of %d is %d." % (n, n**3)
...
The cube of 1 is 1.
The cube of 2 is 8.
The cube of 3 is 27.
The cube of 4 is 64.
The cube of 5 is 125.

You may put the body of the loop—that is, the statements that will be executed once for each item in
the sequence—on the same line as the “for” if you like. If there are multiple statements in the body,
separate them with semicolons.

>>> for n in range(1,6): print "%d**3=%d" % (n, n**3),
...
1**3=1 2**3=8 3**3=27 4**3=64 5**3=125

Here is an another example. In this case, the sequence is a specific list.

>>> for s in ('a', 'e', 'i', 'o', 'u'):
... word = "st" + s + "ck"
... print "Pick up the", word
...
Pick up the stack

New Mexico Tech Computer CenterA Python programming tutorial38

Pick up the steck
Pick up the stick
Pick up the stock
Pick up the stuck

6.5.The while statement
Use this statement when you want to perform a block B as long as a condition C is true:

while C:
B
...

C?
True

B
False

Here is how a while statement is executed.

1. Evaluate C. If the result is true, go to step 2. If it is false, the loop is done, and control passes to the
statement after the end of B.

2. Execute block B.

3. Go back to step 1.

Here is an example of a simple while loop.

>>> i = 1
>>> while i < 100:
... print i,
... i = i * 2
...
1 2 4 8 16 32 64

This construct has the potential to turn into an infinite loop, that is, one that never terminates. Be sure
that the body of the loop does something that will eventually make the loop terminate.

6.6. Special branch statements: break and continue
Sometimes you need to exit a for or while loop without waiting for the normal termination. There
are two special Python branch statements that do this:

• If you execute a break statement anywhere inside a for or while loop, control passes out of the
loop and on to the statement after the end of the loop.

• A continue statement inside a for loop transfers control back to the top of the loop, and the variable
is set to the next value from the sequence if there is one. (If the loop was already using the last value
of the sequence, the effect of continue is the same as break.)

39A Python programming tutorialNew Mexico Tech Computer Center

Here are examples of those statements.

>>> i = 0
>>> while i < 100:
... i = i + 3
... if (i % 5) == 0:
... break
... print i,
...
3 6 9 12

In the example above, when the value of i reaches 15, which has a remainder of 0 when divided by 5,
the break statement exits the loop.

>>> for i in range(500, -1, -1):
... if (i % 100) != 0:
... continue
... print i,
...
500 400 300 200 100 0

7. How to write a self-executing Python script
So far we have used Python's conversational mode to demonstrate all the features. Now it's time to
learn how to write a complete program.

Your program will live in a file called a script. To create your script, use your favorite text editor (emacs,
vi, Notepad, whatever), and just type your Python statements into it.

How you make it executable depends on your operating system.

• On Windows platforms, be sure to give your script file a name that ends in “.py”. If Python is installed,
double-clicking on any script with this ending will use Python to run the script.

• Under Linux and MacOS X, the first line of your script must look like this:

#!pythonpath

The pythonpath tells the operating system where to find Python. This path will usually be
“/usr/local/bin/python”, but you can use the “which” shell command to find the path on your
computer:

bash-3.1$ which python
/usr/local/bin/python

Once you have created your script, you must also use this command to make it executable:

chmod +x your-script-name

Here is a complete script, set up for a typical Linux installation. This script, powersof2, prints a table
showing the values of 2n and 2-n for n in the range 1, 2, ..., 12.

#!/usr/local/bin/python
print "Table of powers of two"
print
print "%10s %2s %-15s" % ("2**n", "n", "2**(-n)")

New Mexico Tech Computer CenterA Python programming tutorial40

for n in range(13):
print "%10d %2d %.15f" % (2**n, n, 2.0**(-n))

Here we see the invocation of this script under the bash shell, and the output:

bash-3.1$./powersof2
Table of powers of two

2**n n 2**(-n)
1 0 1.000000000000000
2 1 0.500000000000000
4 2 0.250000000000000
8 3 0.125000000000000
16 4 0.062500000000000
32 5 0.031250000000000
64 6 0.015625000000000
128 7 0.007812500000000
256 8 0.003906250000000
512 9 0.001953125000000
1024 10 0.000976562500000
2048 11 0.000488281250000
4096 12 0.000244140625000

8. def: Defining functions
You can define your own functions in Python with the def statement.

• Python functions can act like mathematical functions such as len(s), which computes the length of
s. In this example, values like s that are passed to the function are called parameters to the function.

• However, more generally, a Python function is just a container for some Python statements that do
some task. A function can take any number of parameters, even zero.

Here is the general form of a Python function definition. It consists of a def statement, followed by an
indented block called the body of the function.

def name (arg0, arg1, ...):
block

The parameters that a function expects are called arguments inside the body of the function.

Here's an example of a function that takes no arguments at all, and does nothing but print some text.

>>> def pirateNoises():
... for arrCount in range(7):
... print "Arr!",
...
>>>

To call this function:

>>> pirateNoises()
Arr! Arr! Arr! Arr! Arr! Arr! Arr!
>>>

41A Python programming tutorialNew Mexico Tech Computer Center

To call a function in general, use an expression of this form:

name (param0, param1, ...)

• The name of the function is followed by a left parenthesis “(”, a list of zero or more parameter values
separated by commas, then a right parenthesis “)”.

• The parameter values are substituted for the corresponding arguments to the function. The value of
parameter param0 is substituted for argument arg0; param1 is substituted for arg1 ; and so forth.

Here's a simple example showing argument substitution.

>>> def grocer(nFruits, fruitKind):
... print "We have %d cases of %s today." % (nFruits, fruitKind)
...
>>> grocer (37, 'kale')
We have 37 cases of kale today.
>>> grocer(0,"bananas")
We have 0 cases of bananas today.
>>>

8.1. return: Returning values from a function
So far we have seen some simple functions that take arguments or don't take arguments. How do we
define functions like len() that return a value?

Anywhere in the body of your function, you can write a return statement that terminates execution
of the function and returns to the statement where it was called.

Here is the general form of this statement:

return expression

The expression is evaluated, and its value is returned to the caller.

Here is an example of a function that returns a value:

>>> def square(x):
... return x**2
...
>>> square(9)
81
>>> square(2.5)
6.25
>>>

• You can omit the expression, and just use a statement of this form:

return

In this case, the special placeholder value None is returned.

• If Python executes your function body and never encounters a return statement, the effect is the
same as a return with no value: the special value None is returned.

Here is another example of a function that returns a value. This function computes the factorial of a
positive integer:

New Mexico Tech Computer CenterA Python programming tutorial42

The factorial of n, denoted n!, is defined as the product of all the integers from 1 to n
inclusive.

For example, 4! = 1×2×3×4 = 24.

We can define the factorial function recursively like this:

• If n is 0 or 1, n! is 1.
• If n is greater than 1, n! = n × (n-1)!.

And here is a recursive Python function that computes the factorial, and a few examples of its use.

>>> def fact(n):
... if n <= 1:
... return 1
... else:
... return n * fact(n-1)
...
>>> for i in range(5):
... print i, fact(i)
...
0 1
1 1
2 2
3 6
4 24
>>> fact(44)
2658271574788448768043625811014615890319638528000000000L
>>>

8.2. Function argument list features
The general form of a def shown in Section 8, “def: Defining functions” (p. 41) is over-simplified. In
general, the argument list of a function is a sequence of four kinds of arguments:

1. If the argument is just a name, it is called a positional argument. There can be any number of positional
arguments, including zero.

2. You can supply a default value for the argument by using the form “name=value”. Such arguments
are called keyword arguments. See Section 8.3, “Keyword arguments” (p. 44).

A function can have any number of keyword arguments, including zero.

All keyword arguments must follow any positional arguments in the argument list.

3. Sometimes it is convenient to write a function that can accept any number of positional arguments.
To do this, use an argument of this form:

* name

A function may have only one such argument, and it must follow any positional or keyword argu-
ments. For more information about this feature, see Section 8.4, “Extra positional arguments” (p. 45).

4. Sometimes it is also convenient to write a function that can accept any number of keyword arguments,
not just the specific keyword arguments. To do this, use an argument of this form:

** name

43A Python programming tutorialNew Mexico Tech Computer Center

If a function has an argument of this form, it must be the last item in the argument list. For more in-
formation about this feature, see Section 8.5, “Extra keyword arguments” (p. 45).

8.3. Keyword arguments
If you want to make some of the arguments to your function optional, you must supply a default value.
In the argument list, this looks like “name=value”.

Here's an example of a function with one argument that has a default value. If you call it with no argu-
ments, the name mood has the string value 'bleah' inside the function. If you call it with an argument,
the name mood has the value you supply.

>>> def report(mood='bleah'):
... print "My mood today is", mood
...
>>> report()
My mood today is bleah
>>> report('hyper')
My mood today is hyper
>>>

If your function has multiple arguments, and the caller supplies multiple parameters, here is how they
are matched up:

• The function call must supply at least as many parameters as the function has positional arguments.

• If the caller supplies more positional parameters than the function has positional arguments, parameters
are matched with keyword arguments according to their position.

Here are some examples showing how this works.

>>> def f(a, b="green", c=3.5):
... print a, b, c
...
>>> f()
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: f() takes at least 1 argument (0 given)
>>> f(47)
47 green 3.5
>>> f(47, 48)
47 48 3.5
>>> f(47, 48, 49)
47 48 49
>>> f(47, 48, 49, 50)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: f() takes at most 3 arguments (4 given)
>>>

Here is another feature: the caller of a function can supply what are called keyword parameters of the
form “name=value”. If the function has an argument with a matching keyword, that argument will
be set to value.

• If a function's caller supplies both positional and keyword parameters, all positional parameters must
precede all keyword parameters.

New Mexico Tech Computer CenterA Python programming tutorial44

• Keyword parameters may occur in any order.

Here are some examples of calling a function with keyword parameters.

>>> def g(p0, p1, k0="K-0", k1="K-1"):
... print p0, p1, k0, k1
...
>>> g(33,44)
33 44 K-0 K-1
>>> g(33,44,"K-9","beep")
33 44 K-9 beep
>>> g(55,66,k1="whirr")
55 66 K-0 whirr
>>> g(7,8,k0="click",k1="clank")
7 8 click clank
>>>

8.4. Extra positional arguments
You can declare your function in such a way that it will accept any number of positional parameters.
To do this, use an argument of the form “*name” in your argument list.

• If you use this special argument, it must follow all the positional and keyword arguments in the list.

• When the function is called, this name will be bound to a tuple containing any positional parameters
that the caller supplied, over and above parameters that corresponded to other parameters.

Here is an example of such a function.

>>> def h(i, j=99, *extras):
... print i, j, extras
...
>>> h(0)
0 99 ()
>>> h(1,2)
1 2 ()
>>> h(3,4,5,6,7,8,9)
3 4 (5, 6, 7, 8, 9)
>>>

8.5. Extra keyword arguments
You can declare your function in such a way that it can accept any number of keyword parameters, in
addition to any keyword arguments you declare.

To do this, place an argument of the form “**name” last in your argument list.

When the function is called, that name is bound to a dictionary that contains any keyword-type para-
meters that are passed in that have names that don't match your function's keyword-type arguments.
In that dictionary, the keys are the names used by the caller, and the values are the values that the caller
passed.

Here's an example.

45A Python programming tutorialNew Mexico Tech Computer Center

>>> def k(p0, p1, nickname='Noman', *extras, **extraKeys):
... print p0, p1, nickname, extras, extraKeys
...
>>> k(1,2,3)
1 2 3 () {}
>>> k(4,5)
4 5 Noman () {}
>>> k(6, 7, hobby='sleeping', nickname='Sleepy', hatColor='green')
6 7 Sleepy () {'hatColor': 'green', 'hobby': 'sleeping'}
>>> k(33, 44, 55, 66, 77, hometown='McDonald', eyes='purple')
33 44 55 (66, 77) {'hometown': 'McDonald', 'eyes': 'purple'}
>>>

8.6. Documenting function interfaces
Python has a preferred way to document the purpose and usage of your functions. If the first line of a
function body is a string constant, that string constant is saved along with the function as the document-
ation string. This string can be retrieved by using an expression of the form f.__doc__, where f is the
function name.

Here's an example of a function with a documentation string.

>>> def pythag(a, b):
... """Returns the hypotenuse of a right triangle with sides a and b.
... """
... return (a*a + b*b)**0.5
...
>>> pythag(3,4)
5.0
>>> pythag(1,1)
1.4142135623730951
>>> print pythag.__doc__
Returns the hypotenuse of a right triangle with sides a and b.

>>>

9. Using Python modules
Once you start building programs that are more than a few lines long, it's critical to apply this overarching
principle to programming design:

Important
Divide and conquer.

In other words, rather than build your program as one large blob of Python statements, divide it into
logical pieces, and divide the pieces into smaller pieces, until the pieces are each small enough to under-
stand.

Python has many tools to help you divide and conquer. In Section 8, “def: Defining functions” (p. 41),
we learned how to package up a group of statements into a function, and how to call that function and
retrieve the result.

New Mexico Tech Computer CenterA Python programming tutorial46

Way back in Section 2.3, “More mathematical operations” (p. 7), we got our first look at another im-
portant tool, Python's module system. Python does not have a built-in function to compute square roots,
but there is a built-in module called math that includes a function sqrt() that computes square roots.

In general, a module is a package of functions and variables that you can import and use in your pro-
grams. Python comes with a large variety of modules, and you can also create your own. Let's look at
Python's module system in detail.

• In Section 9.1, “Importing items from modules” (p. 47), we learn to import items from existing
modules.

• Section 9.2, “Import entire modules” (p. 48) shows another way to use items from modules.
• Section 9.4, “Build your own modules” (p. 50).

9.1. Importing items from modules
Back in Section 2.2, “The assignment statement” (p. 5), we learned that there is an area called the
“global namespace,” where Python keeps the names and values of the variables you define.

The Python dir() function returns a list of all the names that are currently defined in the global
namespace. Here is a conversational example; suppose you have just started up Python in conversational
mode.

>>> dir()
['__builtins__', '__doc__', '__name__']
>>> frankness = 0.79
>>> dir()
['__builtins__', '__doc__', '__name__', 'frankness']
>>> def oi():
... print "Oi!"
...
>>> dir()
['__builtins__', '__doc__', '__name__', 'frankness', 'oi']
>>> type(frankness)
<type 'float'>
>>> type(oi)
<type 'function'>
>>>

When Python starts up, three variables are always defined: __builtins__, __doc__, and __name__.
These variables are for advanced work and needn't concern us now.

Note that when we define a variable (frankness), next time we call dir(), that name is in the resulting
list. When we define a function (oi), its name is also added. Note also that you can use the type()
function to find the type of any currently defined name: frankness has type float, and oi has type
function.

Now let's see what happens when we import the contents of the math module into the global namespace:

>>> from math import *
>>> dir()
['__builtins__', '__doc__', '__name__', 'acos', 'asin', 'atan', 'atan2',
'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod',
'frankness', 'frexp', 'hypot', 'ldexp', 'log', 'log10', 'modf', 'oi', 'pi',
'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']
>>> sqrt(64)

47A Python programming tutorialNew Mexico Tech Computer Center

8.0
>>> pi*10.0
31.415926535897931
>>> cos(0.0)
1.0
>>>

As you can see, the names we have defined (oi and frankness) are still there, but all of the variables
and functions from the math module are now in the namespace, and we can use its functions and
variables like sqrt() and pi.

In general, an import statement of this form copies all the functions and variables from the module
into the current namespace:

from someModule import *

However, you can also be selective about which items you want to import. Use a statement of this form:

from someModule import item1, item2, ...

where the keyword import is followed by a list of names, separated by commas.

Here's another example. Assume that you have just started a brand new Python session, and you want
to import only the sqrt() function and the constant pi:

>>> dir()
['__builtins__', '__doc__', '__name__']
>>> from math import sqrt, pi
>>> dir()
['__builtins__', '__doc__', '__name__', 'pi', 'sqrt']
>>> sqrt(25.0)
5.0
>>> cos(0.0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'cos' is not defined
>>>

We didn't ask for the cos() function to be imported, so it is not part of the global namespace.

9.2. Import entire modules
Some modules have hundreds of different items in them. In cases like that, you might not want to
clutter up your global namespace with all those items. There is another way to import a module. Here
is the general form:

import moduleName

This statement adds only one name to the current namespace—the name of the module itself. You can
then refer to any item inside that module using an expression of this form:

moduleName.itemName

Here is an example, again using the built-in math module. Assume that you have just started up a new
Python session and you have added nothing to the namespace yet.

New Mexico Tech Computer CenterA Python programming tutorial48

>>> dir()
['__builtins__', '__doc__', '__name__']
>>> import math
>>> dir()
['__builtins__', '__doc__', '__name__', 'math']
>>> type(math)
<type 'module'>
>>> math.sqrt(121.0)
11.0
>>> math.pi
3.1415926535897931
>>> math.cos(0.0)
1.0
>>>

As you can see, using this form of import adds only one name to the namespace, and that name has
type module.

There is one more additional feature of import we should mention. If you want to import an entire
module M1, but you want to refer to its contents using a different name M2, use a statement of this form:

import M1 as M2

An example:

>>> dir()
['__builtins__', '__doc__', '__name__']
>>> import math as crunch
>>> dir()
['__builtins__', '__doc__', '__name__', 'crunch']
>>> type(crunch)
<type 'module'>
>>> crunch.pi
3.1415926535897931
>>> crunch.sqrt(888.888)
29.81422479287362
>>>

You can apply Python's built-in dir() function to a module object to find out what names are defined
inside it:

>>> import math
>>> dir()
['__builtins__', '__doc__', '__name__', 'math']
>>> dir(math)
['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan', 'atan2', 'ceil',
'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp',
'hypot', 'ldexp', 'log', 'log10', 'modf', 'pi', 'pow', 'radians', 'sin',
'sinh', 'sqrt', 'tan', 'tanh']
>>>

49A Python programming tutorialNew Mexico Tech Computer Center

9.3. A module is a namespace
Modules are yet another example of a Python namespace, just as we've discussed in Section 2.2, “The
assignment statement” (p. 5) and Section 5.3, “A namespace is like a dictionary” (p. 32).

When you import a module using the form “import moduleName”, you can refer to some name N
inside that module using the period operator: “moduleName.N”.

So, like any other namespace, a module is a container for a unique set of names, and the values to which
each name is connected.

9.4. Build your own modules
If you have a common problem to solve, chances are very good that there are modules already written
that will reduce the amount of code you have to write.

• Python comes with a large collection of built-in modules. See the Python Library Reference7.
• The python.org site also hosts a collection of thousands of third-party modules: see the Python

package index8.

You can also build your own modules. A module is similar to a script (see Section 7, “How to write a
self-executing Python script” (p. 40)): it is basically a text file containing the definitions of Python
functions and variables.

To build your own module, use a common text editor to create a file with a name of the form “module-
Name.py”. The moduleName you choose must be a valid Python name—it must start with a letter or
underbar, and consist entirely of letters, underbars, and digits.

Inside that file, place Python function definitions and ordinary assignment statements.

Here is a very simple module containing one function and one variable. It lives in a file named cuber.py.

def cube(x):
return x**3

cubeVersion = "1.9.33"

Here is an example interactive session that uses that module:

>>> dir()
['__builtins__', '__doc__', '__name__']
>>> from cuber import *
>>> dir()
['__builtins__', '__doc__', '__name__', 'cube', 'cubeVersion']
>>> cube(3)
27
>>> cubeVersion
'1.9.33'
>>>

There is one more refinement we suggest for documenting the contents of a module. If the first line of
the module's file is a string constant, it is saved as the module's “documentation string.” If you later
import such a module using the form “import moduleName”, you can retrieve the contents of the
documentation string using the expression “moduleName.__doc__”.

7 http://docs.python.org/lib/lib.html
8 http://pypi.python.org/pypi

New Mexico Tech Computer CenterA Python programming tutorial50

http://docs.python.org/lib/lib.html
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://docs.python.org/lib/lib.html
http://pypi.python.org/pypi

Here is an expanded version of our cuber.py with a documentation string:

"""cuber.py: Simple homemade Python module

Contents:
cube(x): Returns the cube of x
cubeVersion: Current version number of this module

"""
def cube(x):

return x**3

cubeVersion = "1.9.33"

Finally, an example of how to retrieve the documentation string:

>>> import cuber
>>> print cuber.__doc__
cuber.py: Simple homemade Python module

Contents:
cube(x): Returns the cube of x
cubeVersion: Current version number of this module

>>> cuber.cube(10)
1000
>>>

10. Input and output
Python makes it easy to read and write files. To work with a file, you must first open it using the built-
in open() function. If you are going to read the file, use the form “open(filename)”, which returns
a file object. Once you have a file object, you can use a variety of methods to perform operations on the
file.

10.1. Reading files
For example, for a file object F, the method F.readline() attempts to read and return the next line
from that file. If there are no lines remaining, it returns an empty string.

Let's start with a small text file named trees containing just three lines:

yew
oak
alligator juniper

Suppose this file lives in your current directory. Here is how you might read it one line at a time:

>>> treeFile = open ('trees')
>>> treeFile.readline()
'yew\n'
>>> treeFile.readline()
'oak\n'

51A Python programming tutorialNew Mexico Tech Computer Center

>>> treeFile.readline()
'alligator juniper\n'
>>> treeFile.readline()
''

Note that the newline characters ('\n') are included in the return value. You can use the string
.rstrip() method to remove trailing newlines, but beware: it also removes any other trailing
whitespace.

>>> 'alligator juniper\n'.rstrip()
'alligator juniper'
>>> 'eat all my trailing spaces \n'.rstrip()
'eat all my trailing spaces'

To read all the lines in a file at once, use the .readlines() method. This returns a list whose elements
are strings, one per line.

>>> treeFile=open("trees")
>>> treeFile.readlines()
['yew\n', 'oak\n', 'alligator juniper\n']

A more general method for reading files is the .read() method. Used without any arguments, it reads
the entire file and returns it to you as one string.

>>> treeFile = open ("trees")
>>> treeFile.read()
'yew\noak\nalligator juniper\n'

To read exactly N characters from a file F, use the method F.read(N). If N characters remain in the file,
you will get them back as an N-character string. If fewer than N characters remain, you will get the re-
maining characters in the file (if any).

>>> treeFile = open ("trees")
>>> treeFile.read(1)
'y'
>>> treeFile.read(5)
'ew\noa'
>>> treeFile.read(50)
'k\nalligator juniper\n'
>>> treeFile.read(80)
''

One of the easiest ways to read the lines from a file is to use a for statement. Here is an example:

>>> >>> treeFile=open('trees')
>>> for treeLine in treeFile:
... print treeLine.rstrip()
...
yew
oak
alligator juniper

As with the .readline() method, when you iterate over the lines of a file in this way, the lines will
contain the newline characters. If the above example did not trim these lines with .rstrip(), each
line of output would be followed by a blank line, because the print statement adds a newline.

New Mexico Tech Computer CenterA Python programming tutorial52

10.2. File positioning for random-access devices
For random-access devices such as disk files, there are methods that let you find your current position
within a file, and move to a different position.

• F.tell() returns your current position in file F.
• F.seek(N) moves your current position to N, where a position of zero is the beginning of the file.
• F.seek(N, 1) moves your current position by a distance of N characters, where positive values of
N move toward the end of the file and negative values move toward the beginning.

For example, F.seek(80, 1) would move the file position 80 characters further from the start of
the file.

• F.seek(N, 2) moves to a position N characters relative to the end of the file. For example,
F.seek(0, 2) would move to the end of the file; F.seek(-200, 2) would move your position
to 200 bytes before the end of the file.

>>> treeFile = open ("trees")
>>> treeFile.tell()
0L
>>> treeFile.read(6)
'yew\noa'
>>> treeFile.tell()
6L
>>> treeFile.seek(1)
>>> treeFile.tell()
1L
>>> treeFile.read(5)
'ew\noa'
>>> treeFile.tell()
6L
>>> treeFile.seek(1, 1)
>>> treeFile.tell()
7L
>>> treeFile.seek(-3, 1)
>>> treeFile.tell()
4L
>>> treeFile.seek(0, 2)
>>> treeFile.tell()
26L
>>> treeFile.seek(-3, 2)
>>> treeFile.tell()
23L
>>> treeFile.read()
'er\n'

10.3. Writing files
To create a disk file, open the file using a statement of this general form:

F = open (filename, "w")

The second argument, "w", specifies write access. If possible, Python will create a new, empty file by
that name. If there is an existing file by that name, and if you have write permission to it, the existing
file will be deleted.

53A Python programming tutorialNew Mexico Tech Computer Center

To write some content to the file you are creating, use this method:

F.write(s)

where s is any string expression.

Warning
The data you have sent to a file with the .write() method may not actually appear in the disk file
until you close it by calling the .close() method on the file.

This is due to a mechanism called buffering. Python accumulates the data you have sent to the file, until
a certain amount is present, and then it “flushes” that data to the physical file by writing it. Python also
flushes the data to the file when you close it.

If you would like to make sure that the data you have written to the file is actually physically present
in the file without closing it, call the .flush() method on the file object.

>>> sports = open ("sportfile", "w")
>>> sports.write ("tennis\nrugby\nquoits\n")
>>> sports.close()
>>> sportFile = open ("sportfile")
>>> sportFile.readline()
'tennis\n'
>>> sportFile.readline()
'rugby\n'
>>> sportFile.readline()
'quoits\n'
>>> sportFile.readline()
''

Here is a lengthy example demonstrating the action of the .flush() method.

>>> sporting = open('sports', 'w')
>>> sporting.write('golf\n')
>>> echo = open('sports')
>>> echo.read()
''
>>> echo.close()
>>> sporting.flush()
>>> echo = open('sports')
>>> echo.read()
'golf\n'
>>> echo.close()
>>> sporting.write('soccer')
>>> sporting.close()
>>> open('sports').read()
'golf\nsoccer'

Note that you must explicitly provide newline characters in the arguments to .write().

11. Introduction to object-oriented programming
So far we have used a number of Python's built-in types such as int, float, list, and file.

New Mexico Tech Computer CenterA Python programming tutorial54

Now it is time to begin exploring some of the more serious power of Python: the ability to create your
own types.

This is a big step, so let's start by reviewing some of the historical development of computer language
features.

11.1. A brief history of snail racing technology
An entrepreneur name Malek Ology would like to develop a service to run snail races to help non-profit
organizations raise funds. Here is the proposed design for Malek's snail-racing track:

Finish line

Starting line

At the start of the race, the snails, with their names written on their backs in organic, biodegradable ink,
are placed inside the starting line, and Malek starts a timer. As each snail crosses the finish line, Malek
records their times.

Malek wants to write a Python program to print the race results. We'll look at the evolution of such a
program through the history of programming. Let's start around 1960.

11.2. Scalar variables
Back around 1960, the hot language was FORTRAN. A lot of the work in this language was done using
scalar variables, that is, a set of variable names, each of which held one number.

Suppose we've just had a snail race, and Judy finished in 87.3 minutes, while Kyle finished in 96.6
minutes. We can create Python variables with those values like this:

>>> judy = 87.3
>>> kyle = 96.6

To find the winner, we can use some if statements like this:

>>> if judy < kyle:
... print "Judy wins with a time of", judy
... elif judy > kyle:
... print "Kyle wins with a time of", kyle

55A Python programming tutorialNew Mexico Tech Computer Center

... else:

... print "Judy and Kyle are tied with a time of", judy

...
Judy wins with a time of 87.3
>>>

If Judy and Kyle are the only two snails, this program will work fine. Malek puts this all into a script.
After each race, he changes the first two lines that give the finish times, and then runs the script.

This will work, but there are a number of objections:

• The person who prepares the race results has to know Python so they can edit the script.
• It doesn't really save any time. Any second-grader can look at the times and figure out who won.
• The names of the snails are part of the program, so if different snails are used, we have to write a new

program.
• What if there are three snails? There are a lot more cases: three cases where a snail clearly wins; three

more possible two-way ties; and a three-way tie. What if Malek wants to race ten snails at once? Too
complicated!

11.3. Snail-oriented data structures: Lists
Let's consider the general problem of a race involving any number of snails. Malek is considering diver-
sifying into amoeba racing, so there might be thousands of competitors in a race. So let's not limit the
number of competitors in the program.

Also, to make it possible to use cheaper labor for production runs, let's write a general-purpose script
that will read a file with the results for each race, so a relatively less skilled person can prepare that file,
and then run a script that will review the results.

We'll use a very simple text file format to encode the race results. Here's an example file for that first
race between Judy and Kyle:

87.3 Judy
96.6 Kyle

And here is a script that will process that file and report on the winning time. The script is called
snailist.py. First, reads a race results file named results and stores the times into a list. The
.split() method is used to break each line into parts, with the first part containing the elapsed time.

#!/usr/local/bin/python
#==
snailist.py: First snail racing results script.
#--

#--
Create an empty list to hold the finish times.
#--
timeList = []

#--
Open the file containing the results.
#--
resultsFile = open ('results')

#--

New Mexico Tech Computer CenterA Python programming tutorial56

Go through the lines of that file, storing each finish time.
#--
for resultsLine in resultsFile:

#--
Create a list of the fields in the line, e.g., ['Judy', '87.3\n'].
#--
fieldList = resultsLine.split()

#--
Convert the finish time into a float and append it to timeList.
#--
timeList.append (float (fieldList[0]))

At this point, timeList is a list of float values. We use the .sort() method to sort the list into as-
cending order, so that the winning time will be in the first element.

#--
Sort timeList into ascending order, then set 'winningTime' to
the best time.
#--
timeList.sort()
print "The winning time is", timeList[0]

Try building the results file and the script yourself to verify that they work. Try some cases where
there are ties.

This script is fine as far as it goes. However, there is one major drawback: it doesn't tell you who won!

11.4. Snail-oriented data structures: A list of tuples
To improve on the script above, let's modify the script so that it keeps each snail's time and name together
in a two-element tuple such as (87.3, 'Judy').

In the improved script, the timeList list is a list of these tuples, and not just a list of times. We can
then sort this list, using an interesting property of tuples. If you compare two tuples, and their first
elements are not equal, the result is the same as if you compared their first elements. However, if the
first elements are equal, Python then compares the second elements of each tuple, and so on until it
either finds two unequal values, or finds that all the elements are equal.

Here's an example. Recall that the function cmp(a, b), function compares two arbitrary values and
returns a negative number if a comes before b, or a positive number if a comes after b, or zero if they
are considered equal:

>>> cmp(50,30)
1
>>> cmp(30,50)
-1
>>> cmp(50,50)
0
>>>

If you compare two tuples and the first elements are unequal, the result is the same as if you compared
the first two elements. For example:

57A Python programming tutorialNew Mexico Tech Computer Center

>>> cmp ((50,30,30), (80,10,10))
-1
>>>

If, however, the first elements are equal, Python then compares the second elements, or the third elements,
until it either finds two unequal elements, or finds that all the elements are equal:

>>> cmp ((50,30,30), (80,10,10))
-1
>>> cmp ((50,30,30), (50,10,10))
1
>>> cmp ((50,30,30), (50,30,80))
-1
>>> cmp ((50,30,30), (50,30,30))
0
>>>

So, watch what happens when we sort a list of two-tuples containing snail times and names:

>>> timeList = [(87.3, 'Judy'), (96.6, 'Kyle'), (63.0, 'Lois')]
>>> timeList.sort()
>>> timeList
[(63.0, 'Lois'), (87.299999999999997, 'Judy'), (96.599999999999994, 'Kyle')]
>>>

Now we have a list that is ordered the way the snails finished. Here is our modified script:

#!/usr/local/bin/python
#==
snailtuples.py: Second snail racing results script.
#--

#--
Create an empty list to hold the result tuples.
#--
timeList = []

#--
Open the file containing the results.
#--
resultsFile = open ('results')

#--
Go through the lines of that file, storing each finish time.
Note that 'resultsLine' is set to each line of the file in
turn, including the terminating newline ('\n').
#--
for resultsLine in resultsFile:

#--
Create a list of the fields in the line, e.g., ['87.3', 'Judy\n'].
We use the second argument to .split() to limit the number
of fields to two maximum; the first argument (None) means
split the line wherever there is any whitespace.
#--

New Mexico Tech Computer CenterA Python programming tutorial58

fieldList = resultsLine.split(None, 1)

#--
Now create a tuple (time,name) and append it to fieldList.
Use .rstrip to remove the newline from the second field.
#--
snailTuple = (float(fieldList[0]), fieldList[1].rstrip())
timeList.append (snailTuple)

#--
Sort timeList into ascending order.
#--
timeList.sort()

#--
Print the results.
#--
print "Finish Time Name"
print "------ ------ ----"
for position in range(len(timeList)):

snailTuple = timeList[position]
print "%4d %6.1f %s" % (position+1, snailTuple[0], snailTuple[1])

Here is a sample run with our original two-snail results file:

Finish Time Name
------ ------ ----

1 87.3 Judy
2 96.6 Kyle

Let's try a larger results file with some names that have spaces in them, just to exercise the script.
Here's the input file:

93.3 Queen Elizabeth I
138.4 Erasmus
88.2 Jim Ryun

And the output for this run:

Finish Time Name
------ ------ ----

1 88.2 Jim Ryun
2 93.3 Queen Elizabeth I
3 138.4 Erasmus

11.5. Abstract data types
The preceding section shows how you can use a Python tuple to combine two simple values into a
compound value. In this case, we use a 2-element tuple whose first element is the snail's time and the
second element is its name.

We might say that this tuple is an abstract data type, that is, a way of combining Python's basic types
(such as floats and strings) into new combinations.

59A Python programming tutorialNew Mexico Tech Computer Center

The next step is to combine values and functions into an abstract data type. Historically, this is how object-
oriented programming arose. The “objects” are packages containing simpler values inside them. However,
in general, these packages can also contain functions.

Before we start looking at how we build abstract data types in Python, let's define some import terms
and look at some real-world examples.

class
When we try to represent in our program some items out in the real world, we first look to see
which items are similar, and group them into classes. A class is defined by one or more things that
share the same qualities.

For example, we could define the class of fountains by saying that they are all permanent man-made
structures, that they hold water, that they are outdoors in a public place, and that they keep the
water in a decorative way.

It should be easy to determine whether any item is a member of the class or not, by applying these
defining rules. For example, Trevi Fountain in Rome fits all the rules: it is man-made, holds water,
is outdoors, and is decorative. Lake Geneva has water spraying out of it, but it's not man-made, so
it's not a fountain.

instance
One of the members of a class. For example, the class of airplanes includes the Wright Biplane of
1903, and the Spirit of St. Louis that Charles Lindbergh flew across the Atlantic.

An instance is always a single item. “Boeing 747” is not an instance, it is a class. However, a specific
Boeing 747, with a unique tail number like N1701, is an instance.

attribute
Since the purpose of most computer applications is in record-keeping, within a program, we must
often track specific qualities of an instance, which we call attributes.

For example, attributes of an airplane include its wingspan, its manufacturer, and its current location,
direction, and airspeed.

We can classify attributes into static and dynamic attributes, depending on whether they change or
not. For example, the wingspan and model number of an airplane do not change, but its location
and velocity can.

operations
Each class has characteristic operations that can be performed on instances of the class. For example,
operations on airplanes include: manufacture; paint; take off; change course; land.

Here is a chart showing some classes, instances, attributes, and operations.

OperationAttributeInstanceClass
Take offWingspanWright FlyerAirplane

EruptAltitudeSocorro PeakMountain

DecorateAmount slow per daySkeen Library ClockClock

Important
You have now seen definitions for most of the important terms in object-oriented programming. Python
classes and instances are very similar to these real-world classes and instances. Python instances have
attributes too.

For historical reasons, the term method is the object-oriented programming equivalent of “operation.”

New Mexico Tech Computer CenterA Python programming tutorial60

The term constructor method is the Python name for the operation that creates a new instance.

So what is an object? This term is used in two different ways:

• An object is just an instance.

• Object-oriented programming means programming with classes.

11.6. Abstract data types in Python
We saw how you can use a two-element tuple to group a snail's time and name together. However, in
the real world, we might need to track more than two attributes of an instance.

Suppose Malek wants to keep track of more attributes of a snail, such as its age in days, its weight in
grams, its length in millimeters, and its color. We could use a six-element tuple like this:

(87.3, 'Judy', 34, 1.66, 39, 'tan')

The problem with this approach is that we have to remember that for a tuple T, the time is in T[0], the
name in T[1], the age in T[2], and so on.

A cleaner, more natural way to keep track of attributes is to give them names. We might encode those
six attributes in a Python dictionary like this:

T = { 'time':87.3, 'name':'Judy', 'age':34, 'mass':1.66,
'length':39, 'color':'tan'}

With this approach, we can retrieve the name as T['name] or the weight as T['mass']. However,
now we have lost the ability to put several of these dictionaries into a list and sort the list—how is Python
supposed to know which dictionary comes first? What we need is something like a dictionary, but with
more features. What we need is Python's object-oriented features.

Now we're to look at actual Python classes and instances in action.

11.7. class SnailRun: A very small example class
Let's start building a snail-racing application for Malek the object-oriented Python way. Let's assume
that all we're tracking about a particular snail is its name and its finishing time. We need to define a
class named SnailRun, whose instances track just these two attributes.

Here is the general form of a class declaration in Python:

class ClassName:
def method1(self, ...):

block1
def method2(self, ...):

block2
... etc.

A class declaration starts out with the keyword class, followed by the name of the class you are defining,
then a colon (:). The methods of the class follow; each method starts with “def”, just as you use to
define a function.

Before we look at the construction of the class, let's see how it works in practice. To create an instance
in Python, you use the name of the class as if it were a function call, followed by a list of arguments in

61A Python programming tutorialNew Mexico Tech Computer Center

parentheses. Our SnailRun constructor method will need two arguments: the snail's name and its
finish time. Once we have defined the class, we can build a new instance like this:

judyRace9 = SnailRun ('judy', 87.3)

To get the snail's name and time attributes from an instance, we use the instance name, followed by a
dot (.), followed by the attribute name:

>>> judyRace9.name
'judy'
>>> print judyRace9.time
87.3

Our example class, SnailRun, will have just two methods:

• All classes have a constructor method named “__init__”. This method is used to create a new instance.
• We'll write a .show() method to format the contents of the instance for display.

Continuing our example from above, here's an example of the use of the .show() method:

>>> print judyRace9.show()
Snail 'judy' finished in 87.3 minutes.

Here is the entire class definition:

class SnailRun:
def __init__ (self, snailName, finishTime):

self.name = snailName
self.time = finishTime

def show (self):
return ("Snail '%s' finished in %.1d minutes." %

(self.name, self.time))

Instantiation means the construction of a new instance. Here is how instantiation works.

1. Somewhere in a Python program, the programmer starts the construction of a new instance by using
the class's name followed by parentheses and a list of arguments. Let's call the arguments (a1, a2,
...).

2. Python creates a new namespace that will hold the instance's attributes. Inside the constructor, this
namespace is referred to as self.

Important
The instance is basically a namespace, that is, a container for attribute names and their definitions. For
other examples of Python namespaces, see Section 2.2, “The assignment statement” (p. 5), Section 5.3,
“A namespace is like a dictionary” (p. 32), and Section 9.3, “A module is a namespace” (p. 50).

3. The __init__() (constructor) method of the class is executed with the argument list (self, a1,
a2, ...).

Note that if the constructor takes N arguments, the caller passes only the last N-1 arguments to it.

4. When the constructor method finishes, the instance is returned to the caller. From then one, the caller
can refer to some attribute A of the instance I as “A.I”.

New Mexico Tech Computer CenterA Python programming tutorial62

Let's look again in more detail at the constructor:

def __init__ (self, snailName, finishTime):
self.name = snailName
self.time = finishTime

All the constructor does is to take the snail's name and finish time and store these values in the instance's
namespace under the names .name and .time, respectively.

Note that the constructor method does not (and cannot) include a return statement. The value of self
is implicitly returned to the statement that called the constructor.

As for the other methods of a class, their definitions also start with the special argument self that
contains the instance namespace. For any method that takes N arguments, the caller passes only the last
N-1 arguments to it.

In our example class, the def for the .show() method has one argument named self, but the caller
invokes it with no arguments at all:

>>> kyleRace3=SnailRun('Kyle', 96.6)
>>> kyleRace3.show()
"Snail 'Kyle' finished in 96.6 minutes."

11.8. Life cycle of an instance
To really understand what is going on inside a running Python program, let's follow the creation of an
instance of the SnailRun class from the preceding section.

Just for review, let's assume you are using conversational mode, and you create a variable like this:

>>> badPi = 3.00

Whenever you start up Python, it creates the “global namespace” to hold the names and values you
define. After the statement above, here's how it looks.

Global namespace

Name Value

3.0

float

badPi

Next, suppose you type in the class definition as above. As it happens, a class is a namespace too—it is
a container for methods. So the global namespace now has two names in it: the variable badPi and the
class SnailRun. Here is a picture of the world after you define the class:

63A Python programming tutorialNew Mexico Tech Computer Center

__init__
function

function
show

3.0

float

badPi

SnailRun
class

ValueName

class SnailRun

ValueName

Global namespace

Next, create an instance of class SnailRun like this:

>>> j1 = SnailRun ('Judy', 87.3)

Here is the sequence of operations:

1. Python creates a new instance namespace. This namespace is initially a copy of the class's namespace:
it contains the two methods .__init__() and .show().

2. The constructor method starts execution with these arguments:
• The name self is bound to the instance namespace.
• The name snailName is bound to the string value 'Judy'.
• The name finishTime is bound to the float value 87.3.

3. This statement in the constructor

self.name = snailName

creates a new attribute .name in the instance namespace, and assigns it the value 'Judy'.

4. The next statement in the constructor creates an attribute named .time in the instance namespace,
and binds it to the value 87.3.

5. The constructor completes, and back in conversational mode, in the global namespace, variable j1
is bound to the instance namespace.

Here's a picture of the world after all this:

New Mexico Tech Computer CenterA Python programming tutorial64

ValueName

instance namespace

show

__init__

ValueName

class SnailRun

function
show

__init__
function

87.3

float
time

’Judy’

str
name

Global namespace

Name Value

badPi

instance

j1

SnailRun
class

3.0

float

11.9. Special methods: Sorting snail race data
Certain method names have special meaning to Python; each of these special method names starts with
two underbars, “__”.

A class's constructor method, __init__(), is an example of a special method. Whenever you use the
class's name as if it were a function, in an expression like “SnailRun('Judy', 67.3)”, Python executes
the constructor method to build the new instance.

There is a full list of all the Python special method names in the Python quick reference9. Next we will
look at another special method, __cmp__, that Python calls whenever you compare two instances of
that class.

Going back to our snail-racing application, an instance of the SnailRun class contains everything we
need to know about one snail's performance: its name in the .nick attribute and its finish time in the
.time attribute.

However, using the tuple representation back in Section 11.4, “Snail-oriented data structures: A list of
tuples” (p. 57), we were able to put a collection of these tuples into a list, and sort the list so that they
were ordered by finish time, with the winner first. Let's see what we need to add to class SnailRun
so that we can sort a list of them into finish order by calling the .sort() method on the list.

First, a bit of review. Back in Section 6.1, “Conditions and the bool type” (p. 33), we learned about the
built-in Python function cmp(x, y), which returns:

• a negative number if x is less than y;
• a positive number if x is greater than y; or
• zero if x equals y.

In a Python class, if you define a method named “__cmp__”, that method is called whenever Python
compares two instances of the class. It must return a result using the same conventions as the built-in
cmp() function: negative for “<”, zero for “==”, positive for “>”.

9 http://infohost.nmt.edu/tcc/help/pubs/python22/special-methods.html

65A Python programming tutorialNew Mexico Tech Computer Center

http://infohost.nmt.edu/tcc/help/pubs/python22/special-methods.html
http://infohost.nmt.edu/tcc/help/pubs/python22/special-methods.html

In the case of “class SnailRun”, we want the snail with the better finishing time to be considered
less than the slower snail. So here is one way to define the __cmp__ method for our class:

def __cmp__ (self, other):
"""Define how to compare two SnailRun instances.
"""
if self.time < other.time:

return -1
elif self.time > other.time:

return 1
else:

return 0

When this method is called, self is an instance of class SnailRun, and other should also be an instance
of SnailRun.

However, this logic exactly duplicates what the built-in cmp() function does to compare two float
values, so we can simplify it like this:

def __cmp__ (self, other):
"""Define how to compare two SnailRun instances.
"""
return cmp(self.time, other.time)

Let's look at another special method, __str__(). This one defines how Python converts an instance
of a class into a string. It is called, for example, when you name an instance in a print statement, or
when you pass an instance to Python's built-in str() function.

The __str__() method of a class returns a string value. It is up to the writer of the class what string
value gets returned. As usual for Python methods, the self argument contains the instance. In the case
of class SnailRun, we'll want to display the snail's name (.nick attribute) and finishing time (.time
attribute). Here's one possible version:

def __str__ (self):
"""Return a string representation of self.
"""
return "%8.1f %s" % (self.time, self.nick)

This method will format the finishing time into an 8-character string, with one digit after the decimal
point, followed by one space, then the snail's name.

Let's assume that the __cmp__() and __str__() methods have been added to our snails.py
module, and show their use in some conversational examples.

>>> from snails import *
>>> sally4 = SnailRun('Sally', 88.8)
>>> jim4=SnailRun('Jim', 76.5)
>>>

Now that we have two SnailRun instances, we can show how the __str__() method formats them
for printing:

>>> print sally4
88.8 Sally

>>> print jim4
76.5 Jim

>>>

New Mexico Tech Computer CenterA Python programming tutorial66

We can also show the various ways that Python compares two instances using our new __cmp__()
method.

>>> cmp(sally4,jim4)
1
>>> sally4 > jim4
True
>>> sally4 <= jim4
False
>>> sally4 < jim4
False
>>>

Now that we have defined how instances are to be ordered, we can sort a list of them in order by finish
time. First we throw them into the list in any old order:

>>> judy4 = SnailRun ('Judy', 67.3)
>>> blake4 = SnailRun ('Blake', 181.4)
>>> race4 = [sally4, jim4, judy4, blake4]
>>> for run in race4:
... print run
...

88.8 Sally
76.5 Jim
67.3 Judy
181.4 Blake

>>>

The .sort() method on a list uses Python's cmp() function to compare items when sorting them, and
this in turn will call our class's __cmp__() method to sort them by finishing time.

>>> race4.sort()
>>> for run in race4:
... print run
...

67.3 Judy
76.5 Jim
88.8 Sally
181.4 Blake

>>>

For an extended example of a class that implements a number of special methods, see rational.py:
An example Python class10. This example shows how to define a new kind of numbers, and specify how
operators such as “+” and “*” operate on instances.

10 http://www.nmt.edu/tcc/help/lang/python/examples/rational/

67A Python programming tutorialNew Mexico Tech Computer Center

http://www.nmt.edu/tcc/help/lang/python/examples/rational/
http://www.nmt.edu/tcc/help/lang/python/examples/rational/
http://www.nmt.edu/tcc/help/lang/python/examples/rational/

New Mexico Tech Computer CenterA Python programming tutorial68

